Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of PILs
2.2. Physicochemical Properties
2.2.1. Solubility
2.2.2. Octanol-Water Partition Coefficient
2.2.3. Surface Activity
2.3. Photostability and Its Mechanism Analysis
2.4. Acute Toxicity to Zebrafish Embryo
2.5. Fungicidal Activity Against Colletotrichum Gloeosporioides
2.6. Pesticide Distribution of Postharvest Mangoes
3. Materials and Methods
3.1. Materials
3.2. Preparation and Characterization of PILs
3.3. Determination of Physicochemical Properties
3.3.1. Solubility
3.3.2. Octanol-Water Partition Coefficient
3.3.3. Surface Activity
3.4. Photostability and Mechanism Analysis
3.5. Acute Toxicity to Zebrafish Embryo
3.6. Fungicidal Activity Against Colletotrichum Gloeosporioides
3.7. Pesticide Distribution of Postharvest Mangoes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ILs | Ionic liquids |
PILs | Prochloraz-based ionic liquids |
APIs | Active pharmaceutical ingredients |
AceA | Acetic acid |
LacA | Lactic acid |
PyrA | Pyruvic acid |
NonA | Nonanoic acid |
OleA | Oleic acid |
BenA | Benzoic acid |
SalA | Salicylic acid |
CinA | Cinnamic acid |
References
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Liang, Y.; Fan, C.; Dong, H.; Zhang, W.; Tang, G.; Yang, J.; Jiang, N.; Cao, Y. Preparation of MSNs-Chitosan@Prochloraz Nanoparticles for Reducing Toxicity and Improving Release Properties of Prochloraz. ACS Sustain. Chem. Eng. 2018, 6, 10211–10220. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, H.; Wang, Y.; Sun, C.; Cui, B.; Zeng, Z. Development Strategies and Prospects of Nano-Based Smart Pesticide Formulation. J. Agric. Food Chem. 2018, 66, 6504–6512. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Xie, Z.; Cheng, J.; Xiao, D.; Xiong, Q.; Wang, Q.; Zhao, J.; Gui, W. A Light-Triggered pH-Responsive Metal–Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape. ACS Nano 2021, 15, 6987–6997. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Gao, Y.; Zhou, L.; Wu, S.; Gong, J. Construction of Fungicide Nano Delivery Platform through Crystal Engineering for Sustainable Fungal Control. Chem. Eng. J. 2024, 490, 151902. [Google Scholar] [CrossRef]
- Ma, Y.; Remón, J.; Luo, L.; Ding, W.; Jiang, Z.; Shi, B. Natural-Based UV-Shielding Additives to Protect Photosensitive Pesticides: Production of Nanoparticles from the Co-Self-Assembly of Lignin and Tannin. Nano Today 2025, 60, 102550. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Liu, M.; Yan, H.; Qiao, X. Ionic Liquids-Based Monolithic Columns: Recent Advancements and Their Applications for High-Efficiency Separation and Enrichment. TrAC Trends Anal. Chem. 2019, 111, 1–12. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Rogers, R.D. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem. Rev. 2023, 123, 11894–11953. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Q.; Chen, Z.; Wu, W.; Lu, Y.; Qi, J. Ionic Liquids as a Useful Tool for Tailoring Active Pharmaceutical Ingredients. J. Control. Release 2021, 338, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Adawiyah, N.; Moniruzzaman, M.; Hawatulaila, S.; Goto, M. Ionic Liquids as a Potential Tool for Drug Delivery Systems. Med. Chem. Commun. 2016, 7, 1881–1897. [Google Scholar] [CrossRef]
- Ranke, J.; Stolte, S.; Störmann, R.; Arning, J.; Jastorff, B. Design of Sustainable Chemical Products the Example of Ionic Liquids. Chem. Rev. 2007, 107, 2183–2206. [Google Scholar] [CrossRef]
- Zotova, J.; Wojnarowska, Z.; Twamley, B.; Paluch, M.; Tajber, L. Green Synthesis of Lidocaine Ionic Liquids and Salts: Mechanisms of Formation and Interactions in the Crystalline and Supercooled States. ACS Sustain. Chem. Eng. 2020, 8, 18266–18276. [Google Scholar] [CrossRef]
- Bica, K.; Cooke, L.R.; Nugent, P.; Rijksen, C.; Rogers, R.D. Toxic on Purpose: Ionic Liquid Fungicides as Combinatorial Crop Protecting Agents. Green. Chem. 2011, 13, 2344. [Google Scholar] [CrossRef]
- Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Ionic Liquids with Herbicidal Anions. Tetrahedron 2011, 67, 4838–4844. [Google Scholar] [CrossRef]
- Pernak, J.; Niemczak, M.; Giszter, R.; Shamshina, J.L.; Gurau, G.; Cojocaru, O.A.; Praczyk, T.; Marcinkowska, K.; Rogers, R.D. Glyphosate-Based Herbicidal Ionic Liquids with Increased Efficacy. ACS Sustain. Chem. Eng. 2014, 2, 2845–2851. [Google Scholar] [CrossRef]
- Tang, G.; Wang, B.; Ding, G.; Zhang, W.; Liang, Y.; Fan, C.; Dong, H.; Yang, J.; Kong, D.; Cao, Y. Developing Ionic Liquid Forms of Picloram with Reduced Negative Effects on the Aquatic Environment. Sci. Total Environ. 2018, 616–617, 128–134. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, J.; Tang, G.; Huo, H.; Zhang, W.; Liang, Y.; Dong, H.; Yang, J.; Cao, Y. Novel Herbicide Ionic Liquids Based on Nicosulfuron with Increased Efficacy. New J. Chem. 2019, 43, 827–833. [Google Scholar] [CrossRef]
- Wilms, W.; Woźniak-Karczewska, M.; Syguda, A.; Niemczak, M.; Ławniczak, Ł.; Pernak, J.; Rogers, R.D.; Chrzanowski, Ł. Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. J. Agric. Food Chem. 2020, 68, 10456–10488. [Google Scholar] [CrossRef]
- Homa, J.; Stachowiak, W.; Olejniczak, A.; Chrzanowski, Ł.; Niemczak, M. Ecotoxicity Studies Reveal That Organic Cations in Dicamba-Derived Ionic Liquids Can Pose a Greater Environmental Risk than the Herbicide Itself. Sci. Total Environ. 2024, 922, 171062. [Google Scholar] [CrossRef] [PubMed]
- Homa, J.; Konończuk, K.; Frankowski, R.; Zgoła-Grześkowiak, A.; Ławniczak, Ł.; Chrzanowski, Ł.; Stachowiak, W.; Niemczak, M. Cations Impact the Biodegradation of Iodosulfuron-Methyl Herbicidal Ionic Liquids by Fungi. Environ. Technol. 2025, 46, 387–400. [Google Scholar] [CrossRef]
- Lisiecka, N.; Ciesielski, T.; Sopata, O.; Parus, A.; Woźniak-Karczewska, M.; Simpson, M.; Frankowski, R.; Zgoła-Grześkowiak, A.; Kloziński, A.; Siwińska-Ciesielczyk, K.; et al. Sorption of Ionic Liquids in Soil Enriched with Polystyrene Microplastic Reveals Independent Behavior of Cations and Anions. Chemosphere 2023, 341, 139927. [Google Scholar] [CrossRef]
- Lisiecka, N.; Parus, A.; Verkhovetska, V.; Zembrzuska, J.; Simpson, M.; Framski, G.; Niemczak, M.; Baranowski, D.; Cajthaml, T.; Chrzanowski, Ł. Effect of Cation Hydrophobicity in Dicamba-Based Ionic Liquids on Herbicide Accumulation and Bioavailability in Soil. J. Environ. Chem. Eng. 2023, 11, 111008. [Google Scholar] [CrossRef]
- Pesticide Properties Database. Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/536.htm (accessed on 27 May 2024).
- Abo-Elyousr, K.A.M.; Imran, M.; Almasoudi, N.M.; Ali, E.F.; Hassan, S.; Sallam, N.M.A.; Youssef, K.; Abdel-Rahim, I.R.; Khalil Bagy, H.M.M. Controlling of Xanthomonas axonopodis Pv. Phaseoli by Induction of Phenolic Compounds in Bean Plants Using Salicylic and Benzoic Acids. J. Plant Pathol. 2022, 104, 947–957. [Google Scholar] [CrossRef]
- Breeuwer, P.; De Reu, J.C.; Drocourt, J.; Rombouts, F.M.; Abee, T. Nonanoic Acid, a Fungal Self-Inhibitor, Prevents Germination of Rhizopus Oligosporus Sporangiospores by Dissipation of the pH Gradient. Appl. Environ. Microbiol. 1997, 63, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Martínez, P.G.; Alkan, N. Induced Resistance to Control Postharvest Decay of Fruit and Vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Månsson, P.E.; Schlyter, F.; Eriksson, C.; Sjödin, K. Nonanoic Acid, Other Alkanoic Acids, and Related Compounds as Antifeedants in Hylobius Abietis Pine Weevils. Entomol. Exp. Appl. 2006, 121, 191–201. [Google Scholar] [CrossRef]
- Ojwang, L.; Awika, J.M. Effect of Pyruvic Acid and Ascorbic Acid on Stability of 3-Deoxyanthocyanidins. J. Sci. Food Agric. 2008, 88, 1987–1996. [Google Scholar] [CrossRef]
- van Hees, P.A.W.; Lundström, U.S.; Giesler, R. Low Molecular Weight Organic Acids and Their Al-Complexes in Soil Solution—Composition, Distribution and Seasonal Variation in Three Podzolized Soils. Geoderma 2000, 94, 173–200. [Google Scholar] [CrossRef]
- Dehghanian, Z.; Habibi, K.; Dehghanian, M.; Aliyar, S.; Lajayer, B.A.; Astatkie, T.; Minkina, T.; Keswani, C. Reinforcing the Bulwark: Unravelling the Efficient Applications of Plant Phenolics and Tannins against Environmental Stresses. Heliyon 2022, 8, e09094. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Q.; Wang, T.; Gao, H. Preparation and Properties of Multifunctional Phenoxyacetate-Based Ionic Liquids and Their Application in Citrus Bacteriostatic Preservation. New J. Chem. 2022, 46, 22621–22632. [Google Scholar] [CrossRef]
- Tang, G.; Liu, Y.; Ding, G.; Zhang, W.; Liang, Y.; Fan, C.; Dong, H.; Yang, J.; Kong, D.; Cao, Y. Ionic Liquids Based on Bromoxynil for Reducing Adverse Impacts on the Environment and Human Health. New J. Chem. 2017, 41, 8650–8655. [Google Scholar] [CrossRef]
- Tang, R.; Tang, T.; Tang, G.; Liang, Y.; Wang, W.; Yang, J.; Niu, J.; Tang, J.; Zhou, Z.; Cao, Y. Pyrimethanil Ionic Liquids Paired with Various Natural Organic Acid Anions for Reducing Its Adverse Impacts on the Environment. J. Agric. Food Chem. 2019, 67, 11018–11024. [Google Scholar] [CrossRef]
- Wan, M.T. Ecological Risk of Pesticide Residues in the British Columbia Environment: 1973–2012. J. Environ. Sci. Health Part B 2013, 4, 344–363. [Google Scholar] [CrossRef]
- Egli, H. Storage Stability of Pesticide Residues. J. Agric. Food Chem. 1982, 30, 861–866. [Google Scholar] [CrossRef]
- Zhu, J.; Ding, G.; Liu, Y.; Wang, B.; Zhang, W.; Guo, M.; Geng, Q.; Cao, Y. Ionic Liquid Forms of Clopyralid with Increased Efficacy against Weeds and Reduced Leaching from Soils. Chem. Eng. J. 2015, 279, 472–477. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, W.; Tang, J.; Niu, J.; Yang, J.; Tang, R.; Dong, H.; Liang, Y.; Luo, L.; Cao, Y. Development of Triflumizole Ionic Liquids Containing Anions of Natural Origin for Improving the Utilization and Minimizing the Adverse Impacts on Aquatic Ecosystems. Sci. Total Environ. 2019, 670, 606–612. [Google Scholar] [CrossRef]
- Yang, J.; Gao, Y.; Zhou, Z.; Tang, J.; Tang, G.; Niu, J.; Chen, X.; Tian, Y.; Li, Y.; Cao, Y. A Simple and Green Preparation Process for PRO@PIL-PHS-PEC Microcapsules by Using Phosphonium Ionic Liquid as a Multifunctional Additive. Chem. Eng. J. 2021, 424, 130371. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Y.; Tang, G.; Tian, Y.; Li, Y.; Wang, H.; Li, X.; Yu, X.; Zhang, Z.; Li, Y.; et al. Facile Preparation of pH/Pectinase Responsive Microcapsules Based on CaCO3 Using Fungicidal Ionic Liquid as a Nucleating Agent for Sustainable Plant Disease Management. Chem. Eng. J. 2022, 446, 137073. [Google Scholar] [CrossRef]
- Domingues, I.; Oliveira, R.; Musso, C.; Cardoso, M.; Soares, A.M.V.M.; Loureiro, S. Prochloraz Effects on Biomarkers Activity in Zebrafish Early Life Stages and Adults. Environ. Toxicol. 2013, 28, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, Q.; Zhou, Y.; Shi, Y.; Gao, H. The Effect of Terbinafine and Its Ionic Salts on Certain Fungal Plant Pathogens. Molecules 2023, 28, 4722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, W.; Wu, W.; Farag, M.A.; Wang, L.; Xiao, S.; Gao, H.; Jiang, W. Critical Assessment of the Delivery Methods of Chemical and Natural Postharvest Preservatives for Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2023, 65, 1070–1092. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Cao, J.; Jiang, W. Enhancing Disease Resistance in Harvested Mango (Mangifera Indica L. Cv. ‘Matisu’) Fruit by Salicylic Acid. J. Sci. Food Agric. 2006, 86, 694–698. [Google Scholar] [CrossRef]
- Martins, I.C.B.; Oliveira, M.C.; Diogo, H.P.; Branco, L.C.; Duarte, M.T. MechanoAPI-ILs: Pharmaceutical Ionic Liquids Obtained through Mechanochemical Synthesis. ChemSusChem 2017, 10, 1360–1363. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (Test No. 117). The OECD Guideline for the Testing of Chemicals; Edward Elgar Publishing: Paris, France, 1995. [Google Scholar]
- Wang, Q.; Wang, T.; Zhou, Y.; Gao, H. Conversion of Fungicide Cyprodinil to Salts with Organic Acids: Preparation, Characterization, Advantages. Pest. Manag. Sci. 2023, 79, 114–124. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development (Test No. 236). The OECD Guideline for the Testing of Chemicals; Edward Elgar Publishing: Paris, France, 1995. [Google Scholar]
Substances | Solvents | |||||
---|---|---|---|---|---|---|
Water 9.0 a | Methanol 6.6 a | Acetone 5.1 a | Ethyl acetate 4.4 a | Toluene 2.3 a | Hexane 0.0 a | |
Prochloraz | − | + | + | + | + | − |
[Pro][AceA] | − | + | + | + | ± | − |
[Pro][LacA] | − | + | + | ± | − | − |
[Pro][PyrA] | − | + | + | ± | − | − |
[Pro][NonA] | − | + | + | + | + | − |
[Pro][OleA] | − | + | + | + | + | + |
[Pro][BenA] | − | + | + | + | + | − |
[Pro][SalA] | − | + | + | + | + | − |
[Pro][CinA] | − | + | + | + | + | − |
Chemicals | Regression Equation | K () | (h) | |
---|---|---|---|---|
Prochloraz | 0.997 | 0.641 | 1.08 | |
[Pro][AceA] | 0.998 | 0.400 | 1.73 | |
[Pro][LacA] | 0.997 | 0.391 | 1.77 | |
[Pro][PyrA] | 0.993 | 0.383 | 1.81 | |
[Pro][NonA] | 0.994 | 0.438 | 1.58 | |
[Pro][OleA] | 0.996 | 0.552 | 1.26 | |
[Pro][BenA] | 0.999 | 0.774 | 0.90 | |
[Pro][SalA] | 0.994 | 0.401 | 1.73 | |
[Pro][CinA] | 0.991 | 0.305 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Liu, F.; Peng, Q.; Wang, W. Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids. Molecules 2025, 30, 1641. https://doi.org/10.3390/molecules30071641
Gao Z, Liu F, Peng Q, Wang W. Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids. Molecules. 2025; 30(7):1641. https://doi.org/10.3390/molecules30071641
Chicago/Turabian StyleGao, Zhiqiang, Fengmao Liu, Qingrong Peng, and Wenzhuo Wang. 2025. "Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids" Molecules 30, no. 7: 1641. https://doi.org/10.3390/molecules30071641
APA StyleGao, Z., Liu, F., Peng, Q., & Wang, W. (2025). Enhancing Photostability of Prochloraz via Designing Natural Acid-Derived Prochloraz-Based Ionic Liquids. Molecules, 30(7), 1641. https://doi.org/10.3390/molecules30071641