Contribution of Zn–Co Alloys Coatings Study: Electrodeposition Methodology, Micromechanical Properties, and Tribological Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study of Sulphate Bath Parameters
3.1.1. Effect of Sodium as an Additive
3.1.2. Effect of Adjusted pH
3.1.3. Effect of Temperature
3.2. Mechanical and Tribological Characterization of Zinc and Zn–Co Coatings
3.2.1. Roughness and Microhardness
3.2.2. Friction and Wear Properties
4. Conclusions
- (1)
- At a room temperature of 17 °C, the addition of salt significantly improved cobalt electrocrystallization, resulting in nodular and uniform Zn–Co coatings.
- (2)
- pH adjustment guaranteed the homogenization and refinement of Zn–Co layers with only 5 wt.% of cobalt content, on the one hand, and the reduction of only two crystallized phases, on the other.
- (3)
- Using 24 °C as room temperature allowed us to deposit alloy coatings with a nodular and remarkably smoother structure, keeping the resulting nodular and smoother alloy coatings while maintaining the same cobalt content (5 wt.%) as at 17 °C.
- (4)
- By adding cobalt, the morphology of pure zinc coatings changed from hexagonal platelets to a typical nodular structure, with the crystallization of monoclinic intermetallic phase γ2 (CoZn13) permitting the reduction in grain size from micrometre (7 µm) to nanometre scale (45 nm).
- (5)
- Alloying zinc with cobalt markedly improved not only the surface quality in terms of roughness, but also the microhardness. This was done by developing alloy coatings which are harder than pure zinc layers.
- (6)
- The upgrade of mechanical characteristics led to an improved of friction response and wear mechanism development by mitigating the friction coefficient and the wear volume loss of pure zinc coatings.
- (7)
- Zn–5 wt% Co coatings presented the best micromechanical qualities and wear resistance, revealing a smooth and hard surface with a nodular nanocrystalline morphology.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boshkov, N. Influence of the alloying component on the protective ability of some zinc galvanic coatings. Electrochim. Acta 2005, 51, 7–84. [Google Scholar]
- Karahan, I.H.; Guder, H.S. Electrodeposition and properties of Zn, Zn-Ni, Zn-Fe and Zn-Fe-Ni alloys from acidic chloride-sulphate electrolytes. Trans. IMF 2009, 87, 155–158. [Google Scholar]
- Abou-Krisha, M.M.; Assaf, F.H.; Toghan, A.A. Electrodeposition of Zn–Ni alloys from sulfate bath. J. Solid State Elelchtrochem. 2007, 11, 244–252. [Google Scholar]
- Nasri, F.; Zouari, M.; Kharrat, M.; Dammak, M.; Vacandio, F.; Eyraud, M. Structural, Micromechanical and Tribological Characterization of Zn–Ni Coatings: Effect of Sulfate Bath Composition. Trans. Indian Inst. Met. 2018, 71, 1827–1840. [Google Scholar]
- Karahan, I.H.; Karabulut, O.; Alver, U. A study on electrodeposited Zn–Co alloys. Phys. Scr. 2009, 79, 055801. [Google Scholar]
- Garcia, J.R.; do Lago, D.C.B.; de Senna, L.F. Electrodeposition of Cobalt Rich Zn-Co alloy Coatings from Citrate Bath. Mater. Res. 2014, 17, 947–957. [Google Scholar]
- Lv, Y.; Cai, G.; Zhang, X.; Fu, S.; Zhang, E.; Yang, L.; Xiao, J.; Dong, Z. Microstructural characterization and in vitro biological performances of Ag, Zn co-incorporated TiO2 coating. Ceram. Int. 2020, 46, 29160–29172. [Google Scholar]
- Zhang, J.; Dai, J.-Q.; Zhang, G.-C.; Zhu, X.-J. Significantly improved ferroelectric properties of (Zn,Co) co-doped BiFeO3 thin films prepared by sol-gel method. Ceram. Int. 2024, 50, 28449–28457. [Google Scholar]
- Tahraoui, L. Effet de la Concentration de Cr sur l’électrodéposition d’un Dépôt Composite Zn-Co-Cr. Ph.D. Thesis, Université de Mohamed Khider Biskra, Biskra, Algeria, 2021. [Google Scholar]
- Yavuz, A.; Yilmaz Erdogan, P.; Zengin, H.; Zengin, G. Electrodeposition and Characterisation of Zn-Co Alloys from Ionic Liquids on Copper. J. Electron. Mater. 2022, 51, 5253–5261. [Google Scholar]
- Bhat, R.S.; Manjunatha, K.B.; Venkatakrishna, K.; Chitharanjan Hegde, A. Electrodeposition of Zn–Co Coating and its Electrochemical Performance. Prot. Met. Phys. Chem. Surf. 2022, 58, 99–108. [Google Scholar]
- Sundaramali, G.; Aiyasamy, J.; Karthikeyan, S.; Kandavel, T.; Arulmurugan, B.; Rajkumar, S.; Sharma, S.; Li, C.; Dwivedi, S.; Kumar, A.; et al. Experimental investigations of electrodeposited Zn–Ni, Zn–Co, and Ni–Cr–Co–based novel coatings on AA7075 substrate to ameliorate the mechanical, abrasion, morphological, and corrosion properties for automotive applications. Rev. Adv. Mater. Sci. 2023, 62, 20220324. [Google Scholar]
- Heydari Gharahcheshmeh, M.; Heydarzadeh Sohi, M. Study of the corrosion behavior of zinc and Zn-Co alloy electrodeposits obtained from alkaline bath using direct current. Mater. Chem. Phys. 2009, 117, 414–421. [Google Scholar]
- Ortiz, Z.I.; Diaz-Arista, P.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Characterization of the corrosion products of electrodeposited Zn; Zn-Co and Zn-Mn alloys coatings. Corros. Sci. 2009, 51, 2703–2715. [Google Scholar]
- Bajat, J.B.; Stanković, S.; Jokić, B.M.; Stevanović, S.I. Corrosion stability of Zn–Co alloys deposited from baths with high and low Co content—The influence of deposition current density. Surf. Coat. Technol. 2010, 204, 2745–2753. [Google Scholar]
- Lichušina, S.; Sudavičius, A.; Juškenas, R.; Bučinskiene, D.; Juzeliūnas, E. Deposition of cobalt rich Zn–Co alloy coatings of high corrosion resistance. Trans. IMF 2008, 86, 141–147. [Google Scholar]
- Toghan, A.; Abou-krisha, M.M.; Assaf, F.H.; El-Sheref, F. Effect of Deposition Potential on the Mechanism and Corrosion Behavior of Zn-Fe-Co Thin Coatings Electrochemically Deposited on a Steel Substrate. Int. J. Electrochem. Sci. 2021, 16, 151044. [Google Scholar]
- Garcia, J.R.; do Lago, D.C.B.; Cesar, D.V.; de Senna, L.F. Pulsed cobalt-rich Zn–Co alloy coatings produced from citrate baths. Surf. Coat. Technol. 2016, 306, 462–472. [Google Scholar]
- Falcón, J.M.; Aoki, I.V. Electrodeposition of Zn-Co alloy coatings on carbon steel and their corrosion resistance. Surf. Coat. Technol. 2024, 481, 130603. [Google Scholar]
- Lodhi, Z.F.; Tichelaar, F.D.; Kwakernaak, C.; Mol, J.M.C.; Terryn, H.; de Wit, J.H.W. A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings. Surf. Coat. Technol. 2008, 202, 2755–2764. [Google Scholar]
- Dikici, T.; Culha, O.; Toparli, M. Study of the mechanical and structural properties of Zn–Ni–Co ternary alloy electroplating. J. Coat. Technol. Res. 2010, 7, 787–792. [Google Scholar] [CrossRef]
- Kahloul, A.; Azizi, F.; Bouaoud, M. Effect of citrate additive on the electrodeposition and corrosion behaviour of Zn–Co alloy. Trans. IMF 2017, 95, 106–113. [Google Scholar] [CrossRef]
- Chu, Q.; Wang, W.; Liang, J.; Hao, J.; Zhen, Z. Electrodeposition of high Co content nanocrystalline Zn–Co alloys from a choline chloride-based ionic liquid. Mater. Chem. Phys. 2013, 142, 539–544. [Google Scholar]
- Panagopoulos, C.N.; Georgarakis, K.G.; Petroutzakou, S. Sliding wear behaviour of zinc–cobalt alloy electrodeposits. J. Mater. Process. Technol. 2005, 160, 234–244. [Google Scholar] [CrossRef]
- Panagopoulos, C.N.; Largis, D.A.; Vatista, P.C. Adhesion and corrosion behavior of Zn-Co electrodeposits on mild steel. Mater. Chem. Phys. 2011, 126, 398–403. [Google Scholar] [CrossRef]
- Caprentier, L. Caractérisation Micromécanique de Matériaux Composites et Anisotropes par Indentation Instrumentée. Ph.D. Thesis, Ecole Centrale de Lyon, Lyon, France, 1994. [Google Scholar]
- Heydari Gharahcheshmeh, M.; Heydarzadeh Sohi, M. Electrochemical studies of zinc–cobalt alloy coatings deposited from alkaline baths containing glycine as complexing agent. J. Appl. Electrochem. 2010, 40, 1563–1570. [Google Scholar] [CrossRef]
- Yi, L.; Wang, S.; Wood, R.J.K. Controlled Compositions in Zn–Ni Coatings by Anode Material Selection for Replacing Cadmium. Coatings 2024, 14, 1119. [Google Scholar] [CrossRef]
- Gómez, E.; Alcobe, X.; Vallés, E. Characterisation of zinc + cobalt alloy phases obtained by electrodeposition. J. Electroanal. Chem. 2001, 505, 54–61. [Google Scholar]
- Rashwan, S.M.; Mohamed, A.E.; Abdel-Wahaab, S.M.; Kamel, M.M. Electrodeposition and characterization of thin layers of Zn–Co alloys obtained from glycinate baths. J. Appl. Electrochem. 2003, 33, 1035–1042. [Google Scholar] [CrossRef]
- Brooks, I.; Erb, U. Hardness of electrodeposited microcrystalline and nanocrystalline gamma-phase Zn-Ni alloys. Scr. Mater. 2001, 44, 853–858. [Google Scholar] [CrossRef]
- Hutchings, I.M. Tribology: Friction and Wear of Engineering Materials; CRC Press: London, UK, 1992. [Google Scholar]
Bath Composition (g/L) | |||
---|---|---|---|
ZnSO4·7H2O (150)/CoSO4·6H2O (350) | |||
Operating Conditions | |||
Solutions | (A) | (B) | (C) |
Room Temperature (°C) | 17 | ||
Na2SO4·6H2O (g/L) | - | 75 | 75 |
Applied Potential (E, V) | −1.2 | −1.2 | −1.2 |
pH | 2.5 | 2.5 | 1.7 |
Electrolyte Volume (mL) | 250 | 250 | 250 |
Anode | Platinum | Platinum | Platinum |
Cathode | Vitreous Carbon | Vitreous Carbon | Mild Steel |
ReferenceEelectrode | Saturated Calomel (SCE) | Saturated Calomel (SCE) | Saturated Calomel (SCE) |
Bath Composition (g/L) | ||
---|---|---|
ZnSO4·7H2O (150)/CoSO4·6H2O (350) | ZnSO4·7H2O (150) | |
Operating Conditions | Operating Conditions | |
Solutions | (D) | (E) |
Room Temperature (°C) | 24 °C | |
Na2SO4·6H2O (g/L) | 75 | 75 |
Applied Potential (E, V) | −1.2 | −1.2 |
pH | 1.7 | 1.7 |
Electrolyte Volume (mL) | 250 | 250 |
Anode | Platinum | Platinum |
Cathode | Mild Steel | Mild steel |
Reference Electrode | Saturated Calomel (SCE) | Saturated Calomel (SCE) |
Current Density (A/dm2) | 2 | 3.7 |
Plating Time (min) | 90 | 64 |
Thickness (µm) | 50.0 ± 0.5 | 51.0 ± 1.0 |
Pure Zinc | Zn–Co Alloys | |
Roughness (µm) | 1.2 ± 0.2 | 0.5 ± 0.1 |
Microhardness (Hv) | 106.5 ± 7.0 | 123 ± 4.0 |
Pure Zinc | Zn–Co Alloys | |
Friction Coefficient | 0.66 ± 0.02 | 0.31 ± 0.02 |
Wear Volume Loss (mm3) | 1 ± 0.08 | 0.58 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, F.; Trabelsi, D.; Kharrat, M.; Dammak, M.; Pereira, A.; Cardoso, C.; Vacandio, F. Contribution of Zn–Co Alloys Coatings Study: Electrodeposition Methodology, Micromechanical Properties, and Tribological Behavior. Lubricants 2025, 13, 167. https://doi.org/10.3390/lubricants13040167
Nasri F, Trabelsi D, Kharrat M, Dammak M, Pereira A, Cardoso C, Vacandio F. Contribution of Zn–Co Alloys Coatings Study: Electrodeposition Methodology, Micromechanical Properties, and Tribological Behavior. Lubricants. 2025; 13(4):167. https://doi.org/10.3390/lubricants13040167
Chicago/Turabian StyleNasri, Faten, Dorra Trabelsi, Mohamed Kharrat, Maher Dammak, Antonio Pereira, César Cardoso, and Florence Vacandio. 2025. "Contribution of Zn–Co Alloys Coatings Study: Electrodeposition Methodology, Micromechanical Properties, and Tribological Behavior" Lubricants 13, no. 4: 167. https://doi.org/10.3390/lubricants13040167
APA StyleNasri, F., Trabelsi, D., Kharrat, M., Dammak, M., Pereira, A., Cardoso, C., & Vacandio, F. (2025). Contribution of Zn–Co Alloys Coatings Study: Electrodeposition Methodology, Micromechanical Properties, and Tribological Behavior. Lubricants, 13(4), 167. https://doi.org/10.3390/lubricants13040167