Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish and Design
2.2. 4D-DIA Proteomics
2.3. Detection of Biochemical Indexes of the Liver
2.4. Oil Red O Staining
2.5. Statistical Analysis
3. Results
3.1. Effects of Probiotics on Hepatic Biochemical Indexes of the C. nasus Fed HFDs
3.2. Effects of Probiotics on Lipid Storage in the Hepatopancreas of the C. nasus Fed HFDs
3.3. 4D-DIA Protein Profiling for Differentially Expressed Protein (DEP) Identification
3.4. Identification of the DEPs Involved in Lipid Metabolism
3.5. Identification of Immune-Related DEPs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ma, Q.; Li, L.-Y.; Le, J.-Y.; Lu, D.-L.; Qiao, F.; Zhang, M.-L.; Du, Z.-Y.; Li, D.-L. Dietary Microencapsulated Oil Improves Immune Function and Intestinal Health in Nile Tilapia Fed with High-Fat Diet. Aquaculture 2018, 496, 19–29. [Google Scholar] [CrossRef]
- Tang, T.; Hu, Y.; Peng, M.; Chu, W.; Hu, Y.; Zhong, L. Effects of High-Fat Diet on Growth Performance, Lipid Accumulation and Lipid Metabolism-Related MicroRNA/Gene Expression in the Liver of Grass Carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 234, 34–40. [Google Scholar] [CrossRef]
- Boujard, T.; Gélineau, A.; Covès, D.; Corraze, G.; Dutto, G.; Gasset, E.; Kaushik, S. Regulation of Feed Intake, Growth, Nutrient and Energy Utilisation in European Sea Bass (Dicentrarchus labrax) Fed High Fat Diets. Aquaculture 2004, 231, 529–545. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Wang, A.; Ye, C.; Zhu, X. Effects of Dietary Protein and Lipid Levels on Growth, Body and Plasma Biochemical Composition and Selective Gene Expression in Liver of Hybrid Snakehead (Channa maculata ♀×Channa argus ♂) Fingerlings. Aquaculture 2017, 468, 1–9. [Google Scholar] [CrossRef]
- Cao, X.-F.; Dai, Y.-J.; Liu, M.-Y.; Yuan, X.-Y.; Wang, C.-C.; Huang, Y.-Y.; Liu, W.-B.; Jiang, G.-Z. High-Fat Diet Induces Aberrant Hepatic Lipid Secretion in Blunt Snout Bream by Activating Endoplasmic Reticulum Stress-Associated IRE1/XBP1 Pathway. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2019, 1864, 213–223. [Google Scholar] [CrossRef]
- Jin, M.; Pan, T.; Tocher, D.R.; Betancor, M.B.; Monroig, Ó.; Shen, Y.; Zhu, T.; Sun, P.; Jiao, L.; Zhou, Q. Dietary Choline Supplementation Attenuated High-Fat Diet-Induced Inflammation through Regulation of Lipid Metabolism and Suppression of NFκB Activation in Juvenile Black Seabream (Acanthopagrus schlegelii). J. Nutr. Sci. 2019, 8, e38. [Google Scholar] [CrossRef]
- Ibabe, A.; Grabenbauer, M.; Baumgart, E.; Fahimi, D.H.; Cajaraville, M.P. Expression of Peroxisome Proliferator-Activated Receptors in Zebrafish (Danio rerio). Histochem. Cell Biol. 2002, 118, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, Z.; Liang, X.; Matulic, D.; Hussein, M.; Gao, J. Growth Performance, Fatty-Acid Composition, Lipid Deposition and Hepatic-Lipid Metabolism-Related Gene Expression in Juvenile Pond Loach Misgurnus anguillicaudatus Fed Diets with Different Dietary Soybean Oil Levels. J. Fish Biol. 2018, 92, 17–33. [Google Scholar] [CrossRef]
- Jia, R.; Cao, L.P.; Du, J.L.; He, Q.; Gu, Z.Y.; Jeney, G.; Xu, P.; Yin, G.J. Effects of High-Fat Diet on Steatosis, Endoplasmic Reticulum Stress and Autophagy in Liver of Tilapia (Oreochromis niloticus). Front. Mar. Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Jin, M.; Pan, T.; Cheng, X.; Zhu, T.T.; Sun, P.; Zhou, F.; Ding, X.; Zhou, Q. Effects of Supplemental Dietary L-Carnitine and Bile Acids on Growth Performance, Antioxidant and Immune Ability, Histopathological Changes and Inflammatory Response in Juvenile Black Seabream (Acanthopagrus schlegelii) Fed High-Fat Diet. Aquaculture 2019, 504, 199–209. [Google Scholar] [CrossRef]
- El-Hameed, S.A.A.A.; Negm, S.S.; Ismael, N.E.M.; Naiel, M.A.E.; Soliman, M.M.; Shukry, M.; Abdel-Latif, H.M.R. Effects of Activated Charcoal on Growth, Immunity, Oxidative Stress Markers, and Physiological Responses of Nile Tilapia Exposed to Sub-Lethal Imidacloprid Toxicity. Animals 2021, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Shan, F.; Liu, M.; Liu, B.; Zhou, Q.; Zheng, X.; Xu, X. High-Fat-Diet-Induced Oxidative Stress in Giant Freshwater Prawn (Macrobrachium rosenbergii) via NF-ΚB/NO Signal Pathway and the Amelioration of Vitamin E. Antioxidants 2022, 11, 228. [Google Scholar] [CrossRef]
- Jia, Y.; Jing, Q.; Niu, H.; Huang, B. Ameliorative Effect of Vitamin E on Hepatic Oxidative Stress and Hypoimmunity Induced by High-Fat Diet in Turbot (Scophthalmus maximus). Fish. Shellfish Immunol. 2017, 67, 634–642. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, C.; Zhang, X.; Wang, C.; Li, P.; Liu, G.; Yan, X.; Xiong, X.; Zhang, L.; Hou, J.; et al. Dietary Nano-Selenium Enhances Antioxidant Capacity and Hypoxia Tolerance of Grass Carp Ctenopharyngodon idella Fed with High-Fat Diet. Aquac. Nutr. 2020, 26, 545–557. [Google Scholar] [CrossRef]
- Ji, R.; Xiang, X.; Li, X.; Mai, K.; Ai, Q. Effects of Dietary Curcumin on Growth, Antioxidant Capacity, Fatty Acid Composition and Expression of Lipid Metabolism-Related Genes of Large Yellow Croaker Fed a High-Fat Diet. Br. J. Nutr. 2021, 126, 345–354. [Google Scholar] [CrossRef]
- Jia, R.; Cao, L.-P.; Du, J.-L.; He, Q.; Gu, Z.-Y.; Jeney, G.; Xu, P.; Yin, G.-J. Effects of High-Fat Diet on Antioxidative Status, Apoptosis and Inflammation in Liver of Tilapia (Oreochromis niloticus) via Nrf2, TLRs and JNK Pathways. Fish. Shellfish Immunol. 2020, 104, 391–401. [Google Scholar] [CrossRef]
- Park, S.; Kang, J.; Choi, S.; Park, H.; Hwang, E.; Kang, Y.; Kim, A.; Holzapfel, W.; Ji, Y. Cholesterol-Lowering Effect of Lactobacillus rhamnosus BFE5264 and Its Influence on the Gut Microbiome and Propionate Level in a Murine Model. PLoS ONE 2018, 13, e0203150. [Google Scholar] [CrossRef]
- Kumar, M.; Rakesh, S.; Nagpal, R.; Hemalatha, R.; Ramakrishna, A.; Sudarshan, V.; Ramagoni, R.; Shujauddin, M.; Verma, V.; Kumar, A.; et al. Probiotic Lactobacillus rhamnosus GG and Aloe Vera Gel Improve Lipid Profiles in Hypercholesterolemic Rats. Nutrition 2013, 29, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, W.; Xia, Y.; Xiong, Z.; Ai, L. Cholesterol-Lowering Potentials of Lactobacillus Strain Overexpression of Bile Salt Hydrolase on High Cholesterol Diet-Induced Hypercholesterolemic Mice. Food Funct. 2019, 10, 1684–1695. [Google Scholar] [CrossRef]
- Choi, I.-D.; Kim, S.-H.; Jeong, J.-W.; Lee, D.E.; Huh, C.-S.; Hong, S.S.; Sim, J.-H. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia. J. Microbiol. Biotechnol. 2016, 26, 483–487. [Google Scholar] [CrossRef]
- Ren, T.; Zhu, J.; Zhu, L.; Cheng, M. The Combination of Blueberry Juice and Probiotics Ameliorate Non-Alcoholic Steatohepatitis (NASH) by Affecting SREBP-1c/PNPLA-3 Pathway via PPAR-α. Nutrients 2017, 9, 198. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Xie, S.; Zhuang, Z.; He, X.; Tang, X.; Tian, L.; Liu, Y.; Niu, J. Dietary Supplementation of Bile Acid Attenuate Adverse Effects of High-Fat Diet on Growth Performance, Antioxidant Ability, Lipid Accumulation and Intestinal Health in Juvenile Largemouth Bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Limbu, S.M.; Zhao, S.-H.; Chen, L.-Q.; Luo, Y.; Zhang, M.-L.; Qiao, F.; Du, Z.-Y. Dietary L-Carnitine Supplementation Recovers the Increased PH and Hardness in Fillets Caused by High-Fat Diet in Nile Tilapia (Oreochromis niloticus). Food Chem. 2022, 382, 132367. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Ye, C. Dietary Ginkgo Biloba Leaf Extracts Supplementation Improved Immunity and Intestinal Morphology, Antioxidant Ability and Tight Junction Proteins MRNA Expression of Hybrid Groupers (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) Fed High Lipid Diets. Fish. Shellfish Immunol. 2020, 98, 611–618. [Google Scholar] [CrossRef]
- Mang, Q.; Gao, J.; Li, Q.; Sun, Y.; Xu, G.; Xu, P. Integrative Analysis of Metagenome and Metabolome Provides New Insights into Intestinal Health Protection in Coilia nasus Larvae via Probiotic Intervention. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2024, 50, 101230. [Google Scholar] [CrossRef]
- Mang, Q.; Gao, J.; Li, Q.; Sun, Y.; Xu, G.; Xu, P. Metagenomic Insight into the Effect of Probiotics on Nitrogen Cycle in the Coilia nasus Aquaculture Pond Water. Microorganisms 2024, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Mawolo, P.Y.; Gao, J.; Chu, L.; Wang, Y.; Nie, Z.; Song, L.; Shao, N.; Gao, J.; Xu, P.; et al. Effects of Supplemental Effective Microorganisms in Feed on the Growth, Immunity, and Appetite Regulation in Juvenile GIFT Tilapia. Aquac. Rep. 2021, 19, 100577. [Google Scholar] [CrossRef]
- Sui, Z.; Wang, X.; Sun, Y.; Zhou, H.; Liu, C.; Mai, K.; He, G. Optimal Dietary Methionine Requirement of Sub-Adult Turbot (Scophthalmus maximus L.): Growth Performance, Feed Utilization and Hepatic Lipid Metabolism. Aquaculture 2023, 566, 739197. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Z.; Ruan, X.; Li, R.; Zhang, Y. Microbial Interaction Patterns and Nitrogen Cycling Regularities in Lake Sediments under Different Trophic Conditions. Sci. Total Environ. 2024, 907, 167926. [Google Scholar] [CrossRef]
- Osborn, O.; Olefsky, J.M. The Cellular and Signaling Networks Linking the Immune System and Metabolism in Disease. Nat. Med. 2012, 18, 363–374. [Google Scholar] [CrossRef]
- Pramfalk, C.; Eriksson, M.; Parini, P. Role of TG-Interacting Factor (Tgif) in Lipid Metabolism. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2015, 1851, 9–12. [Google Scholar] [CrossRef]
- Lu, K.L.; Xu, W.N.; Li, J.Y.; Li, X.F.; Huang, G.Q.; Liu, W.B. Alterations of Liver Histology and Blood Biochemistry in Blunt Snout Bream Megalobrama amblycephala Fed High-Fat Diets. Fish. Sci. 2013, 79, 661–671. [Google Scholar] [CrossRef]
- Xia, T.; Mao, X.; Zhang, J.; Rahimnejad, S.; Lu, K. Effects of Quercetin and Hydroxytyrosol Supplementation in a High-Fat Diet on Growth, Lipid Metabolism, and Mitochondrial Function in Spotted Seabass (Lateolabrax maculatus). Aquaculture 2024, 582, 740538. [Google Scholar] [CrossRef]
- Alberdi, G.; Rodríguez, V.M.; Macarulla, M.T.; Miranda, J.; Churruca, I.; Portillo, M.P. Hepatic Lipid Metabolic Pathways Modified by Resveratrol in Rats Fed an Obesogenic Diet. Nutrition 2013, 29, 562–567. [Google Scholar] [CrossRef]
- Röhrl, C.; Stangl, H. Cholesterol Metabolism—Physiological Regulation and Pathophysiological Deregulation by the Endoplasmic Reticulum. Wien. Med. Wochenschr. 2018, 168, 280–285. [Google Scholar] [CrossRef]
- Wang, C.S.; Liu, S.H.; Peng, J.; Tang, C.; Zhu, W.G. Bile Acids Cycle Disruption in Patients with Nasopharyngeal Carcinoma Promotes the Elevation of Interleukin-10 Secretion. Afr. Health Sci. 2015, 15, 1200–1203. [Google Scholar] [CrossRef]
- Zhou, J.S.; Chen, H.J.; Ji, H.; Shi, X.C.; Li, X.X.; Chen, L.Q.; Du, Z.Y.; Yu, H.B. Effect of Dietary Bile Acids on Growth, Body Composition, Lipid Metabolism and Microbiota in Grass Carp (Ctenopharyngodon idella). Aquac. Nutr. 2018, 24, 802–813. [Google Scholar] [CrossRef]
- Knights, K.M. Role of hepatic fatty acid: Coenzyme a ligases in the metabolism of xenobiotic carboxylic acids. Clin. Exp. Pharmacol. Physiol. 1998, 25, 776–782. [Google Scholar] [CrossRef]
- Zhou, T.; Cao, L.; Du, Y.; Qin, L.; Lu, Y.; Zhang, Q.; He, Y.; Tan, D. Gypenosides Ameliorate High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice by Regulating Lipid Metabolism. PeerJ 2023, 11, e15225. [Google Scholar] [CrossRef]
- Adjoumani, J.J.Y.; Wang, K.; Zhou, M.; Liu, W.; Zhang, D. Effect of Dietary Betaine on Growth Performance, Antioxidant Capacity and Lipid Metabolism in Blunt Snout Bream Fed a High-Fat Diet. Fish Physiol. Biochem. 2017, 43, 1733–1745. [Google Scholar] [CrossRef]
- Ye, C.; Wu, J.; Reiss, J.D.; Sinclair, T.J.; Stevenson, D.K.; Shaw, G.M.; Chace, D.H.; Clark, R.H.; Prince, L.S.; Ling, X.B.; et al. Progressive Metabolic Abnormalities Associated with the Development of Neonatal Bronchopulmonary Dysplasia. Nutrients 2022, 14, 3547. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Hanson, R.L.; Muller, Y.L.; Ma, L.; Kobes, S.; Knowler, W.C.; Bogardus, C.; Baier, L.J. Variants in ACAD10 Are Associated with Type 2 Diabetes, Insulin Resistance and Lipid Oxidation in Pima Indians. Diabetologia 2010, 53, 1349–1353. [Google Scholar] [CrossRef]
- Man, K.; Kallies, A. Synchronizing Transcriptional Control of T Cell Metabolism and Function. Nat. Rev. Immunol. 2015, 15, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cheung-See-Kit, M.; Williams, T.A.; Yamout, N.; Zufferey, R. The Glycosomal Alkyl-Dihydroxyacetonephosphate Synthase TbADS Is Essential for the Synthesis of Ether Glycerophospholipids in Procyclic Trypanosomes. Exp. Parasitol. 2018, 185, 71–78. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, Y.; Tian, H.; Jiang, G.; Li, X.; Liu, W. Resveratrol Supplementation Improves Lipid and Glucose Metabolism in High-Fat Diet-Fed Blunt Snout Bream. Fish Physiol. Biochem. 2018, 44, 163–173. [Google Scholar] [CrossRef]
- Ma, J.; Kong, L.; Zhou, S.; Lin, H.; Lin, Y.; Qin, H.; Long, Z.; Liu, L.; Huang, Z.; Li, Z. Effect of Supplementation of Chlorogenic Acid to High-Fat Diet on Growth, Lipid Metabolism, Intestinal and Hepatic Histology, and Gut Microbiota of Spotted Sea Bass (Lateolabrax maculatus). Metabolites 2023, 13, 1067. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Lu, K.L.; Xu, W.N.; Liu, W.B.; Wang, L.N.; Zhang, C.N.; Li, X.F. Association of Mitochondrial Dysfunction with Oxidative Stress and Immune Suppression in Blunt Snout Bream Megalobrama amblycephala Fed a High-Fat Diet. J. Aquat. Anim. Health 2014, 26, 100–112. [Google Scholar] [CrossRef]
- Xie, S.; Yin, P.; Tian, L.; Yu, Y.; Liu, Y.; Niu, J. Dietary Supplementation of Astaxanthin Improved the Growth Performance, Antioxidant Ability and Immune Response of Juvenile Largemouth Bass (Micropterus salmoides) Fed High-Fat Diet. Mar. Drugs 2020, 18, 642. [Google Scholar] [CrossRef]
- Lu, K.L.; Wang, L.N.; Zhang, D.D.; Liu, W.B.; Xu, W.N. Berberine Attenuates Oxidative Stress and Hepatocytes Apoptosis via Protecting Mitochondria in Blunt Snout Bream Megalobrama amblycephala Fed High-Fat Diets. Fish Physiol. Biochem. 2017, 43, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Metzger, D.C.H.; Hemmer-Hansen, J.; Schulte, P.M. Conserved Structure and Expression of Hsp70 Paralogs in Teleost Fishes. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2016, 18, 10–20. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, F.; Zhao, H.; Chen, L.; Wang, T.; Wu, X. DNA Methylation Status of DNAJA4 Is Essential for Human Erythropoiesis. Epigenomics 2022, 14, 1249–1267. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar]
- Xia, Y.; Xu, Y.; Liu, Q.; Zhang, J.; Zhang, Z.; Jia, Q.; Tang, Q.; Jing, X.; Li, J.; Chen, J.; et al. Glutaredoxin 1 Regulates Cholesterol Metabolism and Gallstone Formation by Influencing Protein S-Glutathionylation. Metabolism 2023, 145, 155610. [Google Scholar] [CrossRef]
- Ramos, F.; Villoria, M.T.; Alonso-Rodríguez, E.; Clemente-Blanco, A. Role of Protein Phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA Damage Response. Cell Stress 2019, 3, 70–85. [Google Scholar] [PubMed]
- Jiang, M.; Wen, H.; Gou, G.W.; Liu, T.L.; Lu, X.; Deng, D.F. Preliminary Study to Evaluate the Effects of Dietary Bile Acids on Growth Performance and Lipid Metabolism of Juvenile Genetically Improved Farmed Tilapia (Oreochromis niloticus) Fed Plant Ingredient-Based Diets. Aquac. Nutr. 2018, 24, 1175–1183. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Vo, T.T.L.; Jang, W.J.; Jeong, C.H. Leukotriene A4 Hydrolase: An Emerging Target of Natural Products for Cancer Chemoprevention and Chemotherapy. Ann. N. Y. Acad. Sci. 2018, 1431, 3–13. [Google Scholar] [CrossRef]
- Hasan, S.; Ghani, N.; Zhao, X.; Good, J.; Huang, A.; Wrona, H.L.; Liu, J.; Liu, C. Dietary Pyruvate Targets Cytosolic Phospholipase A2 to Mitigate Inflammation and Obesity in Mice. Protein Cell 2024, 15, 661. [Google Scholar] [CrossRef] [PubMed]
- Karhadkar, T.R.; Pilling, D.; Gomer, R.H. Serum Amyloid P Inhibits Single Stranded RNA-Induced Lung Inflammation, Lung Damage, and Cytokine Storm in Mice. PLoS ONE 2021, 16, e0245924. [Google Scholar] [CrossRef]
- Li, X.; Jin, Q.; Yao, Q.; Zhou, Y.; Zou, Y.; Li, Z.; Zhang, S.; Tu, C. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation. Front. Immunol. 2017, 8, 801. [Google Scholar] [CrossRef]
- Martinez-Lopez, N.; Singh, R. Autophagy and Lipid Droplets in the Liver. Annu. Rev. Nutr. 2015, 35, 215–237. [Google Scholar]
- Teranishi, H.; Tabata, K.; Saeki, M.; Umemoto, T.; Hatta, T.; Otomo, T.; Yamamoto, K.; Natsume, T.; Yoshimori, T.; Hamasaki, M. Identification of CUL4A-DDB1-WDFY1 as an E3 Ubiquitin Ligase Complex Involved in Initiation of Lysophagy. Cell Rep. 2022, 40, 111349. [Google Scholar] [CrossRef] [PubMed]
- Gok, M.O.; Connor, O.M.; Wang, X.; Menezes, C.J.; Llamas, C.B.; Mishra, P.; Friedman, J.R. The Outer Mitochondrial Membrane Protein TMEM11 Demarcates Spatially Restricted BNIP3/BNIP3L-Mediated Mitophagy. J. Cell Biol. 2023, 222, e202204021. [Google Scholar] [CrossRef]
- Allavena, G.; Boyd, C.; Oo, K.S.; Maellaro, E.; Zhivotovsky, B.; Kaminskyy, V.O. Suppressed Translation and ULK1 Degradation as Potential Mechanisms of Autophagy Limitation under Prolonged Starvation. Autophagy 2016, 12, 2085–2097. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Yan, X.; Li, P.; Wang, C.; Zhang, C.; Ji, H. Selenium Reduces Hepatopancreas Lipid Accumulation of Grass Carp (Ctenopharyngodon idella) Fed High-Fat Diet via Lipophagy Activation. Anim. Nutr. 2023, 15, 126–136. [Google Scholar] [CrossRef]
Category | Protein Name | log2 FC (PHFD vs. HFD) | p-Value |
---|---|---|---|
Cholesterol metabolism | cyp27a1 | 1.03799 | 0.04690 |
cyp7a1 | 1.61418 | 0.01628 | |
cyp7b1 | 0.86079 | 0.04051 | |
Fatty acid synthesis | acs | −0.82762 | 0.02826 |
elovl6 | −3.54031 | 0.00075 | |
β-oxidation | crot | 0.89933 | 0.04389 |
crat | 0.77788 | 0.00496 | |
acsf2 | 0.60992 | 0.02569 | |
acad10 | 3.01985 | 0.04275 | |
adaps | 0.82102 | 0.04862 | |
cytochrome b-c1 complex | 0.58690 | 0.01976 | |
cytochrome c oxidase | 2.77624 | 0.02383 | |
NADH dehydrogenase | 0.75456 | 0.00415 |
Category | Protein Name | log2 FC (PHFD vs. HFD) | p-Value |
---|---|---|---|
Antioxidant | hsp70 | 3.24694 | 0.00005 |
gpx7 | 1.38751 | 0.04474 | |
grx1 | 0.59686 | 0.04087 | |
dnaja4 | 1.96795 | 0.00036 | |
pp2a | 1.87770 | 0.03120 | |
Inflammation | lta4h | −0.61626 | 0.02037 |
cpla2 | −0.81500 | 0.02278 | |
sap | 0.98291 | 0.04948 | |
Autophagy | wdfy1 | −0.78409 | 0.02599 |
tmem11 | −0.64195 | 0.00794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Mang, Q.; Sun, Y.; Xu, G. Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver. Biology 2025, 14, 381. https://doi.org/10.3390/biology14040381
Gao J, Mang Q, Sun Y, Xu G. Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver. Biology. 2025; 14(4):381. https://doi.org/10.3390/biology14040381
Chicago/Turabian StyleGao, Jun, Qi Mang, Yi Sun, and Gangchun Xu. 2025. "Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver" Biology 14, no. 4: 381. https://doi.org/10.3390/biology14040381
APA StyleGao, J., Mang, Q., Sun, Y., & Xu, G. (2025). Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver. Biology, 14(4), 381. https://doi.org/10.3390/biology14040381