Multi-Analytical Characterisation of an Alcoholic Beverage Obtained by Blending of White Wine and Organic Kiwifruit Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Beverages
2.2. Chemicals and Materials
2.3. DPPH Radical Scavenging Assay
2.4. Total Phenolic Content Assay
2.5. pH, Buffer Capacity, and Redox Potential
2.6. HPLC Analysis of Selected Polyphenols and Ascorbic Acid
2.7. SPME-GC/MS Volatile Profiling
2.8. Statistical Analysis
3. Results and Discussion
3.1. Potentiometric Analysis and Ascorbic Acid Content
3.2. Polyphenols and Antioxidant Activity
3.3. Volatile Profiles
Compound | KW | TW | TWKW | Odour Descriptor [44,47,48,50,52,54,57] |
---|---|---|---|---|
β-Damascenone | 158.4 | 77.8 | 81.8 | stewed fruit, apple, peach |
Methanethiol | 77.0 | 27.6 | 27.8 | cooked cabbage, intense onion |
Isoamyl acetate | 50.3 | 98.3 | 264.3 | banana |
Ethyl Propanoate | 31.8 | 7.2 | 30.8 | sweet, ethereal, fruity |
Furaneol | 27.4 | 10.0 | 9.4 | cotton candy |
Methyl Hexanoate | 25.3 | 8.8 | 14.7 | fruity |
4-Vinylguaiacol | 20.9 | 22.3 | 19.6 | phenolic, smokey |
Isovaleric acid | 17.9 | 12.9 | 14.2 | cheese |
Butanoic Acid | 8.3 | 4.1 | 4.7 | rancid, cheese, sweat |
4-Vinylphenol | 6.6 | 6.3 | 8.7 | spicy, pharmaceuthical |
Hotrienol | 6.0 | 1.4 | 2.6 | fresh, sweet, floral, lemon–like |
3-Mercaptoheptan-1-ol | 5.9 | 204.3 | 56.3 | grape fruit |
β-Ionone | 5.4 | 1.2 | 1.8 | violets |
Linalool | 5.1 | 4.9 | 5.1 | fruit, citrus |
2-Methyl-3-Furanthiol | 4.3 | 2.3 | 3.1 | meat |
Octanoic Acid | 3.3 | 5.2 | 4.8 | animal, spicy, cheese |
Hexanoic Acid | 3.2 | 4.2 | 3.9 | rancid, pungent, green |
Geraniol | 2.7 | 1.6 | 1.4 | rose, geranium |
2-Hexen-1-ol | 2.7 | 3.0 | 3.1 | fruity, slightly, green |
Eugenol | 2.4 | 0.1 | 0.3 | clove, honey |
Ethyl Hexanoate | 2.3 | 3.2 | 6.1 | apple peel, fruit |
(E)-2-Hexenal | 2.2 | 1.9 | 3.2 | green, herbal |
2-Furanmethanethiol | 2.0 | 0.9 | 1.6 | roasted coffee |
Acetaldehyde | 1.8 | 3.4 | 2.8 | pungent, ether (bruised apple) |
1-Hexanol | 1.7 | 0.7 | 0.9 | resin, flower, green (cut grass) |
Ethyl isobutyrate | 1.4 | 0.5 | 1.3 | fruity, strawberry |
Decanoic Acid | 1.4 | 2.6 | 1.9 | fatty acid |
Phenylacetaldehyde | 1.3 | 14.0 | 2.2 | flowery, rose |
Acetic Acid | 1.3 | 0.9 | 0.8 | vinegar |
γ-Nonalactone | 1.1 | 1.5 | 1.4 | peach, coconut |
(E)-Isoeugenol | 1.1 | 0.0 | 0.1 | floral |
3-Mercaptohexan-1-ol | 1.1 | 0.8 | 0.9 | grape fruit, passion fruit |
1-Octen-3-ol | 1.0 | 0.1 | 0.1 | mushroom, fishy |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buja, L.M. The History, Science, and Art of Wine and the Case for Health Benefits: Perspectives of an Oenophilic Cardiovascular Pathologist. Cardiovasc. Pathol. 2022, 60, 107446. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.K.; Panesar, P.S.; Rana, V.S.; Kaur, S. Science and Technology of Fruit Wines: An Overview. In Science and Technology of Fruit Wine Production; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128010341. [Google Scholar]
- Jagtap, U.B.; Bapat, V.A. Wines from Fruits Other than Grapes: Current Status and Future Prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Shahidi, F. Nutraceuticals and Functional Foods: Whole versus Processed Foods. Trends Food Sci. Technol. 2009, 20, 376–387. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Soszka, A. Molecules Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion. Molecules 2020, 25, 5574. [Google Scholar] [CrossRef]
- Srikanta, A.H.; Kumar, A.; Sukhdeo, S.V.; Peddha, M.S.; Govindaswamy, V. The Antioxidant Effect of Mulberry and Jamun Fruit Wines by Ameliorating Oxidative Stress in Streptozotocin-Induced Diabetic Wistar Rats. Food Funct. 2016, 7, 4422–4431. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.P.; Joshi, V.K.; Smith, A.; Parmar, I. Chemistry of Fruit Wines. In Science and Technology of Fruit Wine Production; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128010341. [Google Scholar]
- Giri, N.A.; Sakhale, B.K.; Nirmal, N.P. Functional Beverages: An Emerging Trend in Beverage World; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780443191435. [Google Scholar]
- Wang, P.; Zhan, P.; Liu, R.; He, W.; Gao, G.; Tian, H. Characterization of the Formation of Key Flavor Volatiles in Kiwifruit (Actinidia deliciosa) During Storage by Integrating. Eur. Food Res. Technol. 2024, 250, 1017–1029. [Google Scholar] [CrossRef]
- Lu, Y.; Guan, X.; Li, R.; Wang, J.; Liu, Y.; Ma, Y.; Lv, J.; Wang, S.; Mu, J. Comparative Study of Microbial Communities and Volatile Profiles during the Inoculated and Spontaneous Fermentation of Persimmon Wine. Process. Biochem. 2021, 100, 49–58. [Google Scholar] [CrossRef]
- Duarte, W.F.; Dias, D.R.; Oliveira, J.M.; Teixeira, J.A.; de Almeida e Silva, J.B.; Schwan, R.F. Characterization of Different Fruit Wines Made from Cacao, Cupuassu, Gabiroba, Jaboticaba and Umbu. LWT 2010, 43, 1564–1572. [Google Scholar] [CrossRef]
- Lu, L.; Mi, J.; Chen, X.; Luo, Q.; Li, X.; He, J.; Zhao, R.; Jin, B.; Yan, Y.; Cao, Y. Analysis on Volatile Components of Co-Fermented Fruit Wines by Lycium ruthenicum Murray and Wine Grapes. Food Sci. Technol. 2022, 42, e12321. [Google Scholar] [CrossRef]
- Ji, M.; Gong, J.; Tian, Y.; Ao, C.; Li, Y.; Tan, J.; Du, G. Comparison of Microbial Communities and Volatile Profiles of Wines Made from Mulberry and Grape. Appl. Microbiol. Biotechnol. 2023, 107, 5079–5094. [Google Scholar] [CrossRef]
- Fracassetti, D.; Bottelli, P.; Corona, O.; Foschino, R.; Vigentini, I. Innovative Alcoholic Drinks Obtained by Co-Fermenting Grape Must and Fruit Juice. Metabolites 2019, 9, 86. [Google Scholar] [CrossRef]
- Casassa, L.F.; Vega-Osorno, A.; Catania, A.A.; Harbertson, J.F. Chemical and Sensory Effects of Cofermentation and Blending of Malbec and Merlot Wines from the Central Coast of California. Aust. J. Grape Wine Res. 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Shen, J.; Huang, W.; You, Y.; Zhan, J. Controlling Strategies of Methanol Generation in Fermented Fruit Wine: Pathways, Advances, and Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70048. [Google Scholar] [CrossRef]
- Han, Y.; Du, J. Relationship of the Methanol Production, Pectin and Pectinase Activity during Apple Wine Fermentation and Aging. Food Res. Int. 2022, 159, 111645. [Google Scholar] [CrossRef] [PubMed]
- OIV International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis-Maximum Acceptable Limits of Various Substances; OIV International Organisation of Vine and Wine: Dijon, Frane, 2004. [Google Scholar]
- Council Regulation (EC) No 491/2009 of 25 May 2009 Amending Regulation (EC) No 1234/2007 Establishing a Common Organisation of Agricultural Markets and on Specific Provisions for Certain Agricultural Products (Single CMO Regulation). Off. J. Eur. Union 2009, 4. Available online: https://eur-lex.europa.eu/eli/reg/2007/1234/oj/eng (accessed on 15 January 2025).
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001. Off. J. Eur. Union 2013. Available online: https://eur-lex.europa.eu/eli/reg/2013/1308/oj/eng (accessed on 15 January 2025).
- Rossetti, A.P.; Perpetuini, G.; Battistelli, N.; Zulli, C.; Arfelli, G.; Suzzi, G.; Cichelli, A.; Tofalo, R. Capturing the Fungal Community Associated with Conventional and Organic Trebbiano Abruzzese Grapes and Its Influence on Wine Characteristics. Food Biosci. 2023, 52. [Google Scholar] [CrossRef]
- Biancolillo, A.; D’Archivio, A.A.; Pietrangeli, F.; Cesarone, G.; Ruggieri, F.; Foschi, M.; Reale, S.; Rossi, L.; Crucianelli, M. Varietal Discrimination of Trebbiano d’Abruzzo, Pecorino and Passerina White Wines Produced in Abruzzo (Italy) by Sensory Analysis and Multi-Block Classification Based on Volatiles, Organic Acids, Polyphenols, and Major Elements. Appl. Sci. 2022, 12, 9794. [Google Scholar] [CrossRef]
- VIVC (Vitis International Variety Catalogue). Available online: https://www.vivc.de/index.php?r=passport%2Fview&id=24748 (accessed on 15 January 2025).
- Makris, D.P.; Psarra, E.; Kallithraka, S.; Kefalas, P. The Effect of Polyphenolic Composition as Related to Antioxidant Capacity in White Wines. Food Res. Int. 2003, 36, 805–814. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Berovic, M. The Role and Application of Redox Potential in Wine Technology. Fermentation 2024, 10, 312. [Google Scholar] [CrossRef]
- Pereira, V.; Câmara, J.S.; Cacho, J.; Marques, J.C. HPLC-DAD Methodology for the Quantification of Organic Acids, Furans and Polyphenols by Direct Injection of Wine Samples. J. Sep. Sci. 2010, 33, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.; Foschi, M.; Biancolillo, A.; Maggi, M.A.; D’Archivio, A.A. Optimization of HS-SPME-GC/MS Analysis of Wine Volatiles Supported by Chemometrics for the Aroma Profiling of Trebbiano d’Abruzzo and Pecorino White Wines Produced in Abruzzo (Italy). Molecules 2023, 28, 1534. [Google Scholar] [CrossRef]
- Vasavada, N. Online Web Statistical Calculators. Available online: http://astatsa.com/ (accessed on 12 January 2025).
- Obreque-Slier, E.; Espínola-Espínola, V.; López-Solís, R. Wine pH Prevails over Buffering Capacity of Human Saliva. J. Agric. Food Chem. 2016, 64, 8154–8159. [Google Scholar] [CrossRef] [PubMed]
- Dartiguenave, C.; Jeandet, P.; Maujean, A. Study of the Contribution of the Major Organic Acids of Wine to the Buffering Capacity of Wine in Model Solutions. Am. J. Enol. Vitic. 2000, 51, 352–356. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of Oxidative Processes in Wine and Value of Reduction Potentials in Enology. Am. J. Enol. Vitic. 2012, 63, 1–10. [Google Scholar] [CrossRef]
- Benucci, I.; Cerreti, M.; Esti, M. Dosing Oxygen from the Early Stages of White Winemaking: Effect on Oxidation–Reduction Potential, Browning Stability, Volatile Composition, and Sensory Properties. Food Chem. 2024, 432, 137243. [Google Scholar] [CrossRef]
- Nerovnykh, L.; Ageyeva, N.; Dakhuzheva, Z.; Meretukov, Z.; Gneush, A. Regulation of Oxidative-Restorative Processes in Secondary Fermentation of Wine Materials in Sparkling Wine Technology. In Proceedings of the E3S Web of Conferences, Online, 29 June 2020; p. 08001. [Google Scholar]
- Hu, L.; Zhu, Y.; Wang, C.; Khalifa, I.; Wang, Z.; Zhang, H.; Jia, Y.; Liang, X. A Critical Review of Persimmon-Derived Pectin: Innovations in Extraction, Structural Characterization, Biological Potentials, and Health-Promoting Effects. Food Chem. 2025, 463, 141453. [Google Scholar] [CrossRef]
- Molet-Rodríguez, A.; Méndez, D.A.; López-Rubio, A.; Fabra, M.J.; Martínez-Sanz, M.; Salvia-Trujillo, L.; Martín-Belloso, O. Emulsification Capacity of Pectin Extracts from Persimmon Waste: Effect of Structural Characteristics and Pectin-Polyphenol Interactions. Food Hydrocoll. 2025, 158, 110553. [Google Scholar] [CrossRef]
- Méndez, D.A.; Fabra, M.J.; Odriozola-Serrano, I.; Martín-Belloso, O.; Salvia-Trujillo, L.; López-Rubio, A.; Martínez-Abad, A. Influence of the Extraction Conditions on the Carbohydrate and Phenolic Composition of Functional Pectin from Persimmon Waste Streams. Food Hydrocoll. 2022, 123, 107066. [Google Scholar] [CrossRef]
- Baghdadi, F.; Nayebzadeh, K.; Aminifar, M.; Mortazavian, A.M. Pectin Purification from Plant Materials. Macromol. Res. 2023, 31, 753–770. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Darias-Rosales, J.; Benítez-Brito, N.; Díaz-Romero, C. Correlations between Antioxidant Activity and Chemical Composition in Diverse Red Wines. ACS Food Sci. Technol. 2024, 4, 2167–2175. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of Pigment and Flavanol Content with Antioxidant Properties in Selected Aged Regional Wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Roussis, I.G.; Lambropoulos, I.; Soulti, K. Scavenging Capacities of Some Wines and Wine Phenolic Extracts. Food Technol. Biotechnol. 2005, 43, 351–358. [Google Scholar]
- Scalzo, R.L. Organic Acids Influence on DPPH Scavenging by Ascorbic Acid. Food Chem. 2008, 107, 40–43. [Google Scholar] [CrossRef]
- Abramovič, H.; Košmerl, T.; Poklar Ulrih, N.; Cigić, B. Contribution of SO2 to Antioxidant Potential of White Wine. Food Chem. 2015, 174, 147–153. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. Factors Influencing the Aroma Composition of Chardonnay Wines. J. Agric. Food Chem. 2014, 62, 6512–6534. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Schneider, R.; Baumes, R. Formation Pathways of Ethyl Esters of Branched Short-Chain Fatty Acids during Wine Aging. J. Agric. Food Chem. 2005, 53, 3503–3509. [Google Scholar] [CrossRef]
- Tufariello, M.; Capone, S.; Siciliano, P. Volatile Components of Negroamaro Red Wines Produced in Apulian Salento Area. Food Chem. 2012, 132, 2155–2164. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compounds Profiling. Food Technol. Biotechnol. 2017, 55, 95–108. [Google Scholar] [CrossRef]
- van Gemert, L.J. Thresholds-Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners: Utrecht, The Netherlands, 2011. [Google Scholar]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Pino, J.A.; Queris, O. Analysis of Volatile Compounds of Mango Wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography–Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Capone, D.L.; Barker, A.; Williamson, P.O.; Francis, I.L. The Role of Potent Thiols in Chardonnay Wine Aroma. Aust. J. Grape Wine Res. 2018, 24, 38–50. [Google Scholar] [CrossRef]
- Roland, A.; Schneider, R.; Razungles, A.; Cavelier, F. Varietal Thiols in Wine: Discovery, Analysis and Applications. Chem. Rev. 2011, 111, 7355–7376. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Markeš, M.; Butorac, A.; Salopek, D.D.; Horvat, I.; Jeromel, A.; Žulj, M.M.; Carlin, S.; Vrhovsek, U. Complexity of the Effects of Pre-Fermentation Oxygenation, Skin Contact and Use of Pectolytic Enzymes in White Winemaking as Revealed by Comprehensive Proteomics and Volatilomics Analysis. Food Chem. 2024, 440, 138266. [Google Scholar] [CrossRef]
- San-Juan, F.; Ferreira, V.; Cacho, J.; Escudero, A. Quality and Aromatic Sensory Descriptors (Mainly Fresh and Dry Fruit Character) of Spanish Red Wines Can Be Predicted from Their Aroma-Active Chemical Composition. J. Agric. Food Chem. 2011, 59, 7916–7924. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef]
- Franco-Luesma, E.; Ferreira, V. Reductive Off-Odors in Wines: Formation and Release of H2S and Methanethiol during the Accelerated Anoxic Storage of Wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef]
- Bonnaffoux, H.; Roland, A.; Schneider, R.; Cavelier, F. Spotlight on Release Mechanisms of Volatile Thiols in Beverages. Food Chem. 2021, 339, 127628. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; Dubourdieu, D. A Novel Method for Quantification of 2-Methyl-3-Furanthiol and 2-Furanmethanethiol in Wines Made from Vitis vinifera Grape Varieties. J. Agric. Food Chem. 2006, 54, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Culleré, L.; Cacho, J.; Ferreira, V. Chemical and Sensory Characterization of Oxidative Behavior in Different Wines. Food Res. Int. 2010, 43, 1423–1428. [Google Scholar] [CrossRef]
Parameter | Beverage a | |||||
---|---|---|---|---|---|---|
KJ | KPJ | KW | KPW | TW | TWKW | |
Alcoholic strength (% vol. ± 0.19) | - | - | 6.52 | 9.12 | 12.38 | 10.82 |
Sugars (fructose + glucose g/L) | 133 | 181 | <1.0 | <1.0 | <1.0 | <1.0 |
Malic acid (g/L) | 3.09 | 2.91 | 0.44 | 3.31 | 0.49 | <0.10 |
Lactic acid (g/L) | - | - | <0.1 | 0.1 | 0.41 | 0.79 |
Tartaric acid (g/L) | - | - | 0.6 | <0.1 | 1.8 | 1.0 |
Citric acid (g/L) | 14.3 | 12.6 | 14.9 | 12.2 | 0.12 | <0.10 |
Succinic acid (g/L) | - | - | 0.65 | 0.39 | 0.91 | 0.77 |
Ascorbic acid (mg/L) | 422 | 254 | 447 | 214 | <20 | <20 |
Total acidity (g/L eq. tartaric acid ± 0.30) | 17.10 | 14.69 | 18.98 | 16.12 | 4.33 | 5.78 |
Volatile acidity (g/L eq. acetic acid ± 0.08) | - | - | 0.48 | 0.25 | 0.19 | 0.26 |
pH (±0.08) | 3.26 | 3.37 | 3.30 | 3.42 | 3.41 | 3.44 |
Yeast assimilable nitrogen (YAN) (mg/L) | 2 | 26 | - | - | 27 | 9 |
Methyl alcohol (mg/L) | - | - | 511 | 620 | 55 ± 19 | 98 ± 24 |
Parameter | Beverage | |||||||
---|---|---|---|---|---|---|---|---|
KJ | KPJ | KW | KPW | TW | TWKW | STWKW | ANOVA # | |
pH | 3.47 ± 0.02 a | 3.66 ± 0.03 ab | 3.48 ± 0.03 a | 3.58 ± 0.01 ab | 3.00 ± 0.05 c | 3.17 ± 0.07 c | 3.76 ± 0.01 ab | *** |
Buffer capacity (mmol/L/pH) | 18.31 ± 0.91 a | 90.03 ± 10.08 bc | 64.10 ± 12.82 ab | 126.98 ± 15.87 c | 25.89 ± 1.50 ab | 46.70 ± 13.91 ab | 36.18 ± 2.28 ab | ** |
Redox potential (mV) | 94.53 ± 1.51 a | 78.50 ± 3.50 ab | 132.51 ± 7.48 c | 58.50 ± 0.50 be | 165.47 ± 7.49 d | 152.01 ± 6.03 cd | 46.52 ± 0.49 e | *** |
Ascorbic acid (mg/L) | 158.45 ± 0.72 ab | 311.62 ± 13.24 c | 293.55 ± 4.63 c | 122.66 ± 6.42 a | n.d. $ | 79.22 ± 4.37 d | 164.60 ± 3.05 b | *** |
Phenolic | Beverage | |||||||
---|---|---|---|---|---|---|---|---|
KJ | KPJ | KW | KPW | TW | TWKW | STWKW | ANOVA # | |
Gallic acid | 1.23 ± 0.04 a | 15.99 ± 2.05 b | 19.40 ± 1.35 b | 19.30 ± 1.61 b | n.d. $ | 0.79 ± 0.00 a | 4.36 ± 0.21 a | *** |
Protocatechuic acid | n.d. | n.d. | 1.08 ± 0.08 | n.d. | n.d. | n.d. | n.d. | |
Tyrosol | 7.55 ± 0.03 a | n.d. | 34.86 ± 1.58 b | 19.19 ± 2.79 c | 27.30 ± 0.64 b | 25.39 ± 1.04 bc | 21.22 ± 0.42 bc | *** |
Catechin | n.d. | 5.30 ± 0.11 a | n.d. | n.d. | 3.31 ± 0.01 b | 2.73 ± 0.04 c | 7.27 ± 0.02 d | *** |
Caffeic acid | n.d. | n.d. | 4.76 ± 0.61 a | 2.36 ± 0.49 a | 3.77 ± 0.05 a | 4.68 ± 0.52 a | 12.49 ± 0.11 b | *** |
Epicatechin | 2.21 ± 0.10 ab | 5.15 ± 0.20 c | 4.26 ± 0.22 c | 3.09 ± 0.36 a | 1.48 ± 0.00 b | 2.41 ± 0.05 ab | 3.23 ± 0.01 ab | *** |
p–Coumaric acid | n.d. | 0.41 ± 0.01 a | 0.87 ± 0.07 b | n.d. | 1.50 ± 0.00 c | 1.43 ± 0.01 c | 1.44 ± 0.00 c | *** |
Ferulic acid | n.d. | 0.38 ± 0.00 a | 0.49 ± 0.04 b | n.d. | 0.49 ± 0.00 ab | 0.54 ± 0.03 b | 0.59 ± 0.00 b | ** |
Ellagic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.53 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsili, L.; Pietrangeli, F.; Brilli, C.; Foschi, M.; Biancolillo, A.; D’Archivio, A.A.; Pescara, G. Multi-Analytical Characterisation of an Alcoholic Beverage Obtained by Blending of White Wine and Organic Kiwifruit Wine. Beverages 2025, 11, 48. https://doi.org/10.3390/beverages11020048
Marsili L, Pietrangeli F, Brilli C, Foschi M, Biancolillo A, D’Archivio AA, Pescara G. Multi-Analytical Characterisation of an Alcoholic Beverage Obtained by Blending of White Wine and Organic Kiwifruit Wine. Beverages. 2025; 11(2):48. https://doi.org/10.3390/beverages11020048
Chicago/Turabian StyleMarsili, Lorenzo, Fabio Pietrangeli, Claudio Brilli, Martina Foschi, Alessandra Biancolillo, Angelo Antonio D’Archivio, and Guerino Pescara. 2025. "Multi-Analytical Characterisation of an Alcoholic Beverage Obtained by Blending of White Wine and Organic Kiwifruit Wine" Beverages 11, no. 2: 48. https://doi.org/10.3390/beverages11020048
APA StyleMarsili, L., Pietrangeli, F., Brilli, C., Foschi, M., Biancolillo, A., D’Archivio, A. A., & Pescara, G. (2025). Multi-Analytical Characterisation of an Alcoholic Beverage Obtained by Blending of White Wine and Organic Kiwifruit Wine. Beverages, 11(2), 48. https://doi.org/10.3390/beverages11020048