Comparison of LiDAR Operation Methods for Forest Inventory in Korean Pine Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Field Measurement (FM)
2.2.2. Handheld Mobile Laser Scanning (HMLS)
2.2.3. Airborne Laser Scanning (ALS)
2.3. Point Cloud Data Analyses
2.3.1. HMLS
2.3.2. ALS
2.3.3. ALS and HMLS Registration
2.3.4. Density Assessment
2.4. Accuracy Assessment
3. Results
3.1. Point Cloud Density Analyses
3.2. Diameter at Breast Height (DBH)
3.3. Height
4. Discussion
4.1. Point Cloud Density
4.2. Tree DBH
4.3. Tree Height
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALS | Airborne Laser Scanning |
BMLS | Backpack Mobile Laser Scanning |
CHM | Canopy Height Model |
DBH | Diameter at Breast Height |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
FM | Field Measurement |
GCPs | Ground Control Points |
GNSS | Global Navigation Satellite System |
HMLS | Handheld Mobile Laser Scanning |
IDW | Inverse Distance Weighting |
IMU | Inertial Measurement Unit |
LiDAR | Light Detection and Ranging |
MAE | Mean Absolute Error |
NIFS | National Institute of Forest Science |
RGB | Red Green Blue |
RMSE | Root Mean Square Error |
SLAM | Simultaneous Localization and Mapping |
SOR | Statistical Outlier Removal |
TLS | Terrestrial Laser Scanning |
UAV | Unmanned Aerial Vehicle |
References
- Hyyppä, E.; Yu, X.; Kaartinen, H.; Hakala, T.; Kukko, A.; Vastaranta, M.; Hyyppä, J. Comparison of Backpack, Handheld, under-Canopy UAV, and above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sens. 2020, 12, 3327. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Ghimire, S.; Xystrakis, F.; Koutsias, N. Using Terrestrial Laser Scanning to Measure Forest Inventory Parameters in a Mediterranean Coniferous Stand of Western Greece. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 213–225. [Google Scholar] [CrossRef]
- Giannetti, F.; Puletti, N.; Quatrini, V.; Travaglini, D.; Bottalico, F.; Corona, P.; Chirici, G. Integrating Terrestrial and Airborne Laser Scanning for the Assessment of Single-Tree Attributes in Mediterranean Forest Stands. Eur. J. Remote Sens. 2018, 51, 795–807. [Google Scholar] [CrossRef]
- Ma, K.; Xiong, Y.; Jiang, F.; Chen, S.; Sun, H. A Novel Vegetation Point Cloud Density Tree-Segmentation Model for Overlapping Crowns Using UAV LiDAR. Remote Sens. 2021, 13, 1442. [Google Scholar] [CrossRef]
- Shimizu, K.; Nishizono, T.; Kitahara, F.; Fukumoto, K.; Saito, H. Integrating Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry to Estimate Individual Tree Attributes in Managed Coniferous Forests in Japan. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102658. [Google Scholar] [CrossRef]
- Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J. Is Field-Measured Tree Height as Reliable as Believed—A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser Scanning and Terrestrial Laser Scanning in a Boreal Forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Chen, X.; Pang, S.; Zeng, H.; Shen, Z. Accuracy Assessment and Error Analysis for Diameter at Breast Height Measurement of Trees Obtained Using a Novel Backpack LiDAR System. For. Ecosyst. 2020, 7, 33. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P.; Hyyppä, J.; Liang, X.; Puttonen, E. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Bazezew, M.N.; Hussin, Y.A.; Kloosterman, E.H. Integrating Airborne LiDAR and Terrestrial Laser Scanner Forest Parameters for Accurate Above-Ground Biomass/Carbon Estimation in Ayer Hitam Tropical Forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 638–652. [Google Scholar] [CrossRef]
- Hauglin, M.; Lien, V.; Næsset, E.; Gobakken, T. Geo-Referencing Forest Field Plots by Co-Registration of Terrestrial and Airborne Laser Scanning Data. Int. J. Remote Sens. 2014, 35, 3135–3149. [Google Scholar] [CrossRef]
- Yang, B.; Zang, Y.; Dong, Z.; Huang, R. An Automated Method to Register Airborne and Terrestrial Laser Scanning Point Clouds. ISPRS J. Photogramm. Remote Sens. 2015, 109, 62–76. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial Laser Scanning in Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Novotny, J.; Navratilova, B.; Albert, J.; Cienciala, E.; Fajmon, L.; Brovkina, O. Comparison of Spruce and Beech Tree Attributes from Field Data, Airborne and Terrestrial Laser Scanning Using Manual and Automatic Methods. Remote Sens. Appl. 2021, 23, 2352–9385. [Google Scholar] [CrossRef]
- Carson, W.W.; Andersen, H.-E.; Reutebuch, S.E.; Mcgaughey, R.J. Lidar applications in forestry-an overview. In Proceedings of the ASPRS Annual Conference, Denver, CO, USA, 23–28 May 2004. [Google Scholar]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef]
- Fekry, R.; Yao, W.; Cao, L.; Shen, X. Ground-Based/UAV-LiDAR Data Fusion for Quantitative Structure Modeling and Tree Parameter Retrieval in Subtropical Planted Forest. For. Ecosyst. 2022, 9, 100065. [Google Scholar] [CrossRef]
- Sibona, E.; Vitali, A.; Meloni, F.; Caffo, L.; Dotta, A.; Lingua, E.; Motta, R.; Garbarino, M. Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy. Forests 2016, 8, 7. [Google Scholar] [CrossRef]
- Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data—A Review of Agroforestry Applications. Remote Sens. 2023, 15, 2263. [Google Scholar] [CrossRef]
- Choi, H.; Song, Y. Comparing Tree Structures Derived among Airborne, Terrestrial and Mobile LiDAR Systems in Urban Parks. GIsci Remote Sens. 2022, 59, 843–860. [Google Scholar] [CrossRef]
- Hilker, T.; van Leeuwen, M.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S. Comparing Canopy Metrics Derived from Terrestrial and Airborne Laser Scanning in a Douglas-Fir Dominated Forest Stand. Trees Struct. Funct. 2010, 24, 819–832. [Google Scholar] [CrossRef]
- Koch, B.; Heyder, U.; Welnacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef]
- Lindberg, E.; Holmgren, J. Individual Tree Crown Methods for 3D Data from Remote Sensing. Curr. For. Rep. 2017, 3, 19–31. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, K.; Sun, H.; Li, C.; Wang, Y.; Zhou, X.; Ma, K.; Sun, H.; Li, C.; Wang, Y. Estimation of Forest Stand Volume in Coniferous Plantation from Individual Tree Segmentation Aspect Using UAV-LiDAR. Remote Sens. 2024, 16, 2736. [Google Scholar] [CrossRef]
- Douss, R.; Farah, I.R. Extraction of Individual Trees Based on Canopy Height Model to Monitor the State of the Forest. Trees For. People 2022, 8, 100257. [Google Scholar] [CrossRef]
- Latella, M.; Sola, F.; Camporeale, C. A Density-Based Algorithm for the Detection of Individual Trees from LiDAR Data. Remote Sens. 2021, 13, 322. [Google Scholar] [CrossRef]
- Del Perugia, B.; Giannetti, F.; Chirici, G.; Travaglini, D. Influence of Scan Density on the Estimation of Single-Tree Attributes by Hand-Held Mobile Laser Scanning. Forests 2019, 10, 277. [Google Scholar] [CrossRef]
- Ryding, J.; Williams, E.; Smith, M.J.; Eichhorn, M.P. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens. 2015, 7, 1095–1111. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests 2018, 9, 398. [Google Scholar] [CrossRef]
- Ojoatre, S.; Zhang, C.; Hussin, Y.A.; Kloosterman, H.E.; Ismail, M.H. Assessing the Uncertainty of Tree Height and Aboveground Biomass from Terrestrial Laser Scanner and Hypsometer Using Airborne LiDAR Data in Tropical Rainforests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4149–4159. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef]
- National Institute of Forest Science (NIFS). Practical Forest Measurement and Survey; National Institute of Forest Science (NIFS): Seoul, Republic of Korea, 2018. [Google Scholar]
- Vatandaşlar, C.; Zeybek, M. Extraction of Forest Inventory Parameters Using Handheld Mobile Laser Scanning: A Case Study from Trabzon, Turkey. Measurement 2021, 177, 109328. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Balsa Barreiro, J.; Avariento Vicent, J.P.; Lerma García, J.L. Airborne Light Detection and Ranging (LiDAR) Point Density Analysis. Sci. Res. Essays 2012, 7, 3010–3019. [Google Scholar] [CrossRef]
- Jia, Y.; Lan, T.; Peng, T.; Wu, H.; Li, C.; Ni, G. Effects of Point Density on DEM Accuracy of Airborne LiDAR. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 493–496. [Google Scholar] [CrossRef]
- Petras, V.; Petrasova, A.; McCarter, J.B.; Mitasova, H.; Meentemeyer, R.K. Point Density Variations in Airborne Lidar Point Clouds. Sensors 2023, 23, 1593. [Google Scholar] [CrossRef]
- Puetz, A.M.; Olsen, R.C.; Anderson, B. Effects of Lidar Point Density on Bare Earth Extraction and DEM Creation. Laser Radar Technol. Appl. XIV 2009, 7323, 126–133. [Google Scholar] [CrossRef]
- LaRue, E.A.; Fahey, R.; Fuson, T.L.; Foster, J.R.; Matthes, J.H.; Krause, K.; Hardiman, B.S. Evaluating the Sensitivity of Forest Structural Diversity Characterization to LiDAR Point Density. Ecosphere 2022, 13, e4209. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z.; Peterson, J.; Chandra, S. The Effect of LiDAR Data Density on DEM Accuracy. In Proceedings of the 17th International Congress on Modelling and Simulation (MODSIM07), Australia, New Zealand, 10–13 December 2007. [Google Scholar]
- Singh, K.K.; Chen, G.; McCarter, J.B.; Meentemeyer, R.K. Effects of LiDAR Point Density and Landscape Context on Estimates of Urban Forest Biomass. ISPRS J. Photogramm. Remote Sens. 2015, 101, 310–322. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Slavík, M. 3D Point Cloud Fusion from UAV and TLS to Assess Temperate Managed Forest Structures. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102917. [Google Scholar] [CrossRef]
- Lee, Y.; Woo, H.; Lee, J.S. Forest Inventory Assessment Using Integrated Light Detection and Ranging (LiDAR) Systems: Merged Point Cloud of Airborne and Mobile Laser Scanning Systems. Sens. Mater. 2022, 34, 4583–4597. [Google Scholar] [CrossRef]
- Krooks, A.; Kaasalainen, S.; Kankare, V.; Joensuu, M.; Raumonen, P.; Kaasalainen, M. Predicting Tree Structure from Tree Height Using Terrestrial Laser Scanning and Quantitative Structure Models. Silva Fenn. 2014, 48, 1125. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, T.G.; Kim, J.P.; Kim, S.J. Assessment on the Applicability of a Handheld LiDAR for Measuring the Geometric Structures of Forest Trees. J. Korean Assoc. Geogr. Inf. Stud. 2022, 25, 48–58. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J.; Olsson, H. Tree Stem and Height Measurements Using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sens. 2014, 6, 4323–4344. [Google Scholar] [CrossRef]
- Gyawali, A.; Aalto, M.; Peuhkurinen, J.; Villikka, M.; Ranta, T. Comparison of Individual Tree Height Estimated from LiDAR and Digital Aerial Photogrammetry in Young Forests. Sustainability 2022, 14, 3720. [Google Scholar] [CrossRef]
- Vatandaşlar, C.; Seki, M.; Zeybek, M. Assessing the Potential of Mobile Laser Scanning for Stand-Level Forest Inventories in near-Natural Forests. For. An. Int. J. For. Res. 2023, 96, 448–464. [Google Scholar] [CrossRef]
- Mielcarek, M.; Stereńczak, K.; Khosravipour, A. Testing and Evaluating Different LiDAR-Derived Canopy Height Model Generation Methods for Tree Height Estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 132–143. [Google Scholar] [CrossRef]
- Peng, X.; Zhao, A.; Chen, Y.; Chen, Q.; Liu, H. Tree Height Measurements in Degraded Tropical Forests Based on UAV-LiDAR Data of Different Point Cloud Densities: A Case Study on Dacrydium Pierrei in China. Forests 2021, 12, 328. [Google Scholar] [CrossRef]
Attributes | Plot 1 | Plot 2 | Plot 3 |
---|---|---|---|
Min DBH (cm) | 29.2 | 23.1 | 36.5 |
Max DBH (cm) | 46.8 | 57.9 | 62.8 |
Mean DBH (cm) | 36.88 (4.63) | 39.14 (8.03) | 43.01 (7.37) |
Min tree height (m) | 16.2 | 20.3 | 18.0 |
Max tree height (m) | 23.8 | 25.4 | 25.9 |
Mean tree height (m) | 21.15 (2.35) | 22.66 (2.31) | 22.09 (1.89) |
Plot size (m2) | 400 | 400 | 400 |
No. of trees (#) | 14 | 17 | 11 |
Tree density (tree/ha) | 350 | 425 | 275 |
Basal area (m2) | 0.61 | 0.83 | 0.65 |
Features | Description |
---|---|
Range | 100 m |
Laser | Class 1/λ 903 nm |
FOV | 360° × 270° |
Scanner points per second | 300,000 |
No. of sensors | 16 |
Vertical angular resolution | 2° |
Horizontal angular resolution | 0.2° |
Raw data file size | 25–50 MB/min |
Relative accuracy | Up to 6 mm |
Range sensor | Velodyne VLP-16 |
Range rating | Class 1 Eye-Safe |
POS system | Integrated SLAM system |
Operating time | 3 h |
RGB camera | CAM |
Point Clouds | Plot | ALS | HMLS | Integrated ALS-HMLS |
---|---|---|---|---|
Ground (points/m2) | Plot 1 | 16 | 3389 | 3393 |
Plot 2 | 13 | 2468 | 2470 | |
Plot 3 | 15 | 1157 | 1167 | |
Vegetation (points/m2) | Plot 1 | 2398 | 21,315 | 23,710 |
Plot 2 | 2683 | 26,727 | 29,129 | |
Plot 3 | 2793 | 23,594 | 26,356 |
Plot | Approaches | Mean DBH | p-Value (Normality Test) | r Coefficient | p-Value (Correlation) |
---|---|---|---|---|---|
1 | HMLS | 36.22 (4.85) | 0.809 | 0.954 | <0.001 |
Integrated ALS-HMLS | 35.97 (4.44) | 0.452 | 0.982 | <0.001 | |
2 | HMLS | 37.85 (7.76) | 0.474 | 0.993 | <0.001 |
Integrated ALS-HMLS | 37.98 (8.11) | 0.542 | 0.991 | <0.001 | |
3 | HMLS | 42.34 (7.02) | 0.002 | 0.952 | <0.001 |
Integrated ALS-HMLS | 42.52 (7.1) | 0.007 | 0.936 | <0.001 | |
All | HMLS | 38.48 (6.99) | 0.013 | 0.975 | <0.001 |
Integrated ALS-HMLS | 38.5 (7.13) | 0.015 | 0.977 | <0.001 |
Plot | Approaches | RMSE (cm) | rRMSE (%) | Bias (cm) | rBias (%) | MAE (cm) |
---|---|---|---|---|---|---|
1 | HMLS | 1.54 | 4.18 | −0.66 | −1.79 | 1.23 |
Integrated ALS-HMLS | 1.54 | 4.18 | −0.66 | −1.79 | 1.23 | |
2 | HMLS | 1.59 | 4.05 | −1.28 | −3.28 | 1.40 |
Integrated ALS-HMLS | 1.59 | 4.06 | −1.16 | −2.98 | 1.27 | |
3 | HMLS | 1.10 | 2.55 | −0.68 | −1.58 | 0.91 |
Integrated ALS-HMLS | 1.18 | 2.74 | −0.48 | −1.13 | 1.04 | |
All | HMLS | 1.46 | 3.70 | −0.92 | −2.33 | 1.21 |
Integrated ALS-HMLS | 1.38 | 3.50 | −0.90 | −2.29 | 1.21 |
Plot | Approaches | Mean Height | p-Value (Normality Test) | r Coefficient | p-Value (Correlation) |
---|---|---|---|---|---|
1 | HMLS | 19.76 (1.74) | 0.039 | −0.191 | 0.514 |
Integrated ALS-HMLS | 21.69 (1.36) | 0.245 | 0.186 | 0.524 | |
ALS | 20.71 (1.01) | 1.000 | 0.217 | 0.456 | |
2 | HMLS | 20.27 (0.9) | 0.984 | 0.684 | 0.003 |
Integrated ALS-HMLS | 22.47 (1.01) | 0.135 | 0.586 | 0.014 | |
ALS | 21.78 (1.36) | 0.333 | 0.511 | 0.036 | |
3 | HMLS | 19.86 (1.01) | 0.228 | 0.757 | 0.007 |
Integrated ALS-HMLS | 21.8 (1.37) | 0.086 | 0.650 | 0.030 | |
ALS | 20.52 (1.08) | 0.263 | 0.860 | 0.001 | |
All | HMLS | 19.99 (1.26) | 0.009 | 0.339 | 0.028 |
Integrated ALS-HMLS | 22.03 (1.28) | 0.190 | 0.518 | 0.000 | |
ALS | 21.09 (1.29) | 0.187 | 0.573 | <0.001 |
Plot | Approaches | RMSE (cm) | rRMSE (%) | Bias (cm) | rBias (%) | MAE (cm) |
---|---|---|---|---|---|---|
1 | HMLS | 3.13 | 14.31 | −2.14 | −9.78 | 2.41 |
Integrated ALS-HMLS | 1.66 | 7.57 | −0.21 | −0.98 | 1.04 | |
ALS | 1.85 | 8.46 | −1.18 | −5.41 | 1.49 | |
2 | HMLS | 2.78 | 12.15 | −2.57 | −11.25 | 2.57 |
Integrated ALS-HMLS | 1.23 | 5.37 | −0.36 | −1.60 | 1.08 | |
ALS | 1.73 | 7.57 | −1.06 | −4.66 | 1.45 | |
3 | HMLS | 2.55 | 11.55 | −2.23 | −10.08 | 2.26 |
Integrated ALS-HMLS | 1.40 | 6.36 | −0.29 | −1.33 | 1.19 | |
ALS | 1.89 | 8.58 | −1.57 | −7.12 | 1.70 | |
All | HMLS | 2.85 | 12.74 | −2.34 | −10.47 | 2.44 |
Integrated ALS-HMLS | 1.43 | 6.41 | −0.30 | −1.33 | 1.10 | |
ALS | 1.81 | 8.13 | −1.24 | −5.54 | 1.53 |
LiDAR Approach | Field Measurement | |
---|---|---|
DBH | Height | |
ALS | NA | High |
HMLS | High | Medium |
Integrated ALS and HMLS | High | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, L.T.N.; Kim, M.; Bang, H.; Park, B.B.; Choi, S.-M. Comparison of LiDAR Operation Methods for Forest Inventory in Korean Pine Forests. Forests 2025, 16, 643. https://doi.org/10.3390/f16040643
Tran LTN, Kim M, Bang H, Park BB, Choi S-M. Comparison of LiDAR Operation Methods for Forest Inventory in Korean Pine Forests. Forests. 2025; 16(4):643. https://doi.org/10.3390/f16040643
Chicago/Turabian StyleTran, Lan Thi Ngoc, Myeongjun Kim, Hongseok Bang, Byung Bae Park, and Sung-Min Choi. 2025. "Comparison of LiDAR Operation Methods for Forest Inventory in Korean Pine Forests" Forests 16, no. 4: 643. https://doi.org/10.3390/f16040643
APA StyleTran, L. T. N., Kim, M., Bang, H., Park, B. B., & Choi, S.-M. (2025). Comparison of LiDAR Operation Methods for Forest Inventory in Korean Pine Forests. Forests, 16(4), 643. https://doi.org/10.3390/f16040643