Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Retrieval and Selection
2.2. Data Extraction and Analysis
2.3. Meta-Analysis
2.4. Meta-Regression
3. Results
3.1. Data Overview
3.2. Effect of Drought Stress on CY in Different Types of Plants
3.3. Effects of Different Intensities of Drought Stress on CY
3.4. Effect of Drought Stress on Crop WUE in Different Types of Plants
3.5. Effects of Different Intensities of Drought Stress on Crop WUE
3.6. Effect of Drought Stress on Growth Characteristics of Crops
3.7. Effect of Drought Stress on Physiological Characteristics of Crops
3.8. Effects of Drought Stress on Crops at Different Periods
3.9. Effects of Drought Stress on Different Crops
3.10. Relationships Between Different Intensities of Drought Stress and CY and WUE
4. Discussion
4.1. Effect of DSRW on Crop Yield
4.2. Effect of DSRW on WUE
4.3. Effect of DSRW on Crop Growth Characteristics
4.4. Effect of DSRW on Crop Physiological Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAT | Catalase |
Ci | Intercellular carbon dioxide concentration |
CY | Crop yield |
DSRW | Drought stress followed by rewatering |
FC | Field water holding capacity |
Gs | Stomatal conductance |
MDA | Malondialdehyde |
Pmax | Maximum net photosynthetic rate |
Pn | Net photosynthetic rate |
POD | Peroxidase |
Pro | Proline |
ROS | Reactive oxygen species |
RWC | Relative leaf water content |
SOD | Superoxide dismutase |
SP | Soluble proteins |
SPAD | Soil plant analysis development |
SS | Soluble sugars |
Tr | Transpiration rate |
WUE | Water use efficiency |
References
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar]
- Nations, U. World Population Prospects: The 2010 Revision, Volume I: Comprehensive Tables; United Nations: New York, NY, USA, 2011. [Google Scholar]
- Gleick, P.H. The Worlds Water 2000–2001: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2000. [Google Scholar]
- Tardieu, F.; Simonneau, T.; Muller, B. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [PubMed]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and developmental responses of crop plants under drought stress: A review. Zemdirb.-Agric. 2017, 104, 267–276. [Google Scholar]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Fan, M.; Jin, L.P.; Liu, Q.C.; Qu, D.Y. Drought-resistant mechanism of potato and its related research progress. Drought-Resist. Mech. Potato Its Relat. Res. Prog. 2006, 2, 101–107. [Google Scholar]
- Kang, S. New agricultural sci-technological revolution and development of chinese water-saving agriculture in 21st century. Agric. Res. Arid Areas 1998, 16, 14–20. [Google Scholar]
- Hussain, S.; Hussain, S.; Qadir, T.; Khaliq, A.; Ashraf, U.; Parveen, A.; Saqib, M.; Rafiq, M. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Sci. Today 2019, 6, 389–402. [Google Scholar]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the impact of drought on agriculture using the US Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar]
- Bohnert, H.J.; Jensen, R.G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996, 14, 89–97. [Google Scholar]
- Khan, M.B.; Hussain, N.; Iqbal, M.Z. Effect of water stress on growth and yield components of maize variety YHS 202. J. Res. Sci. 2001, 12, 15–18. [Google Scholar]
- Wu, R.; Yang, J.; Wang, L.; Guo, X. Physiological response of flax seedlings with different drought-resistances to drought stress. Acta Agric. Boreali-Sin. 2019, 34, 145–153. [Google Scholar]
- Orcen, N.; Altinbas, M. Use of some stress tolerance indices for late drought in spring wheat. Fresenius Environ. Bull. 2014, 23, 2289–2293. [Google Scholar]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Perrone, I.; Pagliarani, C.; Lovisolo, C.; Chitarra, W.; Roman, F.; Schubert, A. Recovery from water stress affects grape leaf petiole transcriptome. Planta 2012, 235, 1383–1396. [Google Scholar] [CrossRef]
- Barbier, E. Book Review: An Economic Approach for Water Management and Conflict Resolution in the Middle East and Beyond. J. Econ. Lit. 2006, 44, 1074–1075. [Google Scholar]
- Shock, C.; Feiberg, E. Deficit irrigation of potato. In Water Reports (FAO); FAO: Rome, Italy, 2002. [Google Scholar]
- Liu, H.; Zheng, W.; Zheng, F.; Wang, L. Influence of rewatering on compensatory effect of maize seedling roots with diluted seawater irrigation. Trans. Chin. Soc. Agric. Eng. 2012, 28, 101–106. [Google Scholar]
- Xue, H.; Zhang, Y.; Liu, L.; Sun, H.; Li, C. Responses of spectral reflectance, photosynthesis and chlorophyⅡ fluorescence in cotton during drought stress and rewatering. Sci. Agric. Sin. 2013, 46, 2386–2393. [Google Scholar]
- Li, S.; Guo, H.; Li, M.; Sun, Y.; Ma, J. Young panicle formation stage after water stress on the production and transport of photosynthate in rice. Acta Agric. Boreali-Sin. 2013, 28, 133–137. [Google Scholar]
- Liang, P.; Xing, X.; Zhou, Q.; Han, L.; Tian, Y.; Zhang, G.; Xing, H.; Jiang, H. Effect of NAA on growth and photosynthetic characteristic of soybean seedling under drought and re-watering. Soybean Sci. 2011, 30, 50–55. [Google Scholar]
- Bu, L.; Zhang, R.; Han, M.; Xue, J.; Chang, Y. The physiological mechanism of compensation effect in maize leaf by rewatering after draught stress. Acta Agric. Boreali-Occident. Sin. 2009, 18, 88–92. [Google Scholar]
- Luo, Y.; Bi, T.; Su, Z.; Cui, X.; Lan, Q. Physiological response of Kalanchoe tubiflora leaves to drought stress and rewatering. J. Trop. Subtrop. Bot. 2014, 22, 391–398. [Google Scholar]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, A.; Liu, F.; Niu, W.; Siddique, K.H.M. Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: A meta-analysis. Soil Tillage Res. 2022, 221, 105392. [Google Scholar]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Coulter, J.A.; Xie, J.; Luo, Z.; Zhang, R.; Deng, X.; Li, L. Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis. Agric. Water Manag. 2020, 229, 105934. [Google Scholar]
- Wang, L.; Coulter, J.A.; Palta, J.A.; Xie, J.; Luo, Z.; Li, L.; Carberry, P.; Li, Q.; Deng, X. Mulching-induced changes in tuber yield and nitrogen use efficiency in potato in China: A meta-analysis. Agronomy 2019, 9, 793. [Google Scholar] [CrossRef]
- Park, H.M. Univariate Analysis and Normality Test Using SAS, Stata, and SPSS; Indiana University: Bloomington, IN, USA, 2015. [Google Scholar]
- Harrer, M.; Cuijpers, P.; Furukawa, T.; Ebert, D. Doing Meta-Analysis with R: A Hands-on Guide; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Banta, J.A.; Stevens, M.H.H.; Pigliucci, M. A comprehensive test of the ‘limiting resources’ framework applied to plant tolerance to apical meristem damage. Oikos 2010, 119, 359–369. [Google Scholar]
- Boliko, M.C. FAO and the situation of food security and nutrition in the world. J. Nutr. Sci. Vitaminol. 2019, 65, S4–S8. [Google Scholar]
- Niu, J.; Zhang, S.; Liu, S.; Ma, H.; Chen, J.; Shen, Q.; Ge, C.; Zhang, X.; Pang, C.; Zhao, X. The compensation effects of physiology and yield in cotton after drought stress. J. Plant Physiol. 2018, 224, 30–48. [Google Scholar]
- Xu, Z.; Zhou, G.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, J.; Yin, L.; Deng, X.; Ke, Q.; Wang, S. Compensation effect of re-watering after different drought stresses on source-sink metabolism during tuber expansion period of potato. Chin. J. Appl. Ecol. 2019, 30, 3777–3786. [Google Scholar]
- Gao, C.; Wu, P.; Wang, Y.; Wen, P.; Guan, X.; Wang, T. Drought and rewatering practices improve adaptability of seedling maize to drought stress by a super-compensate effect. Heliyon 2024, 10, 39602. [Google Scholar] [CrossRef]
- He, J.; Wen, R.; Tian, S.; Su, Y.; He, X.; Su, Y.; Cheng, W.; Huang, K.; Zhang, S. Effects of drought stress and re-watering on growth and yield of different maize varieties at tasseling stage. Agric. Sci. Technol. 2017, 18, 1145–1151+1157. [Google Scholar]
- Dietz, K.; Zörb, C.; Geilfus, C. Drought and crop yield. Plant Biol. 2021, 23, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Abdolshahi, R.; Safarian, A.; Nazari, M.; Pourseyedi, S.; Mohamadi-Nejad, G. Screening drought-tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Arch. Agron. Soil Sci. 2013, 59, 685–704. [Google Scholar] [CrossRef]
- Jamieson, P.; Martin, R.; Francis, G. Drought influences on grain yield of barley, wheat, and maize. N. Z. J. Crop Hortic. Sci. 1995, 23, 55–66. [Google Scholar] [CrossRef]
- Zörb, C.; Becker, E.; Merkt, N.; Kafka, S.; Schmidt, S.; Schmidhalter, U. Shift of grain protein composition in bread wheat under summer drought events. J. Plant Nutr. Soil Sci. 2017, 180, 49–55. [Google Scholar] [CrossRef]
- Flexas, J.; Niinemets, Ü.; Gallé, A.; Barbour, M.M.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.; Galmés, J.; Ribas-Carbo, M.; Rodriguez, P.L. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth. Res. 2013, 117, 45–59. [Google Scholar] [CrossRef]
- Xue, Q.; Zhu, Z.; Musick, J.T.; Stewart, B.; Dusek, D.A. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol. 2006, 163, 154–164. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Liu, M.; Pei, D.; Sun, H. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
- Kobata, T.; Palta, J.A.; Turner, N.C. Rate of development of postanthesis water deficits and grain filling of spring wheat. Crop Sci. 1992, 32, 1238–1242. [Google Scholar] [CrossRef]
- Wang, L. Study on Water Characteristic and Water Use Efficiency of Winter Wheat—Taking Luancheng County in Huabei Plain as a Case Study. Ph.D. Thesis, Beijing Normal University, Beijing, China, 2005. [Google Scholar]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Chen, X.; Gao, Z.; Luo, Y. Compensatory effect of drought-wet changing environment on winter wheat growth. J. Inn. Mong. Agric. Univ. 2001, 22, 62–66. [Google Scholar]
- Dong, S.; Jiang, Y.; Dong, Y.; Wang, L.; Wang, W.; Ma, Z.; Yan, C.; Ma, C.; Liu, L. A study on soybean responses to drought stress and rehydration. Saudi J. Biol. Sci. 2019, 26, 2006–2017. [Google Scholar]
- Bielorai, H.; Hopmans, P. Recovery of leaf water potential, transpiration, and photosynthesis of cotton during irrigation cycles. Agron. J. 1975, 67, 629–632. [Google Scholar]
- Xu, X.; Bland, W. Resumption of water uptake by sorghum after water stress. Agron. J. 1993, 85, 697–702. [Google Scholar]
- Zhang, F.; Yang, Y.; He, W.; Sun, F.; Zhang, L. Changes of antioxidant enzymes in wheat subjected to water deficit and rewatering. Acta Physiol. Plant. 2004, 26, 345–352. [Google Scholar]
- Zhang, H.; Niu, J.; Xuan, C. Effects of drought stress and rewatering on content of proline and malondiadehyde in pea leaves. J. Gansu Agric. Univ. 2008, 43, 50–54. [Google Scholar]
- Guo, X.; Guo, F.; Liu, Z. Effects of water stress and rewatering on photosynthetic rate and soluble sugar of maize. J. Maize Sci. 2008, 16, 68–70. [Google Scholar]
Influence Factors | Sub-Group | ||
---|---|---|---|
Stress Periods | Preceding periods | Mid periods | Later periods |
Jointing stage, Rejuvenation stage, Seedling stage, Tillering stage, Trifoliolate stage, Vigorous growing stage | Boll opening stage, Booting stage, Branching stage, Bud stage, Canopy Development, Filling stage, Flowering stage, Heading stage, Leaf cluster stage, Panicle primordium differentiation stage, Stage of grouting, Pollen formation stage, Prime flowering stage, Stamen extraction stage, Tasseling stage, The first flowering stage, The flowering bell stage, The flowering stage, Tuber forming stage | Dilatation stage, Fruiting stage, Maturity stage, Pod-bearing stage, Starch accumulation stage, Storage root development, The flowering pod stage, The stage of silk production, Tuber expansion stage, Tympanic stage | |
Stress Intensities | Mild stress | Medium stress | Heavy stress |
>65% FC, >−20 kPa | 46%~65% FC, <−20 kPa~−40 kPa | <46% FC, <−41 kPa | |
Stress Durations | Short-term coercion | Medium-term stress | Long-term stress |
<20 d | 21 d~40 d | >41 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, Z.; Zhu, J.; Wang, W.; Gao, C.; Qi, J.; Qiu, X.; Bao, M.; Luo, H.; Li, Y.; et al. Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response. Agronomy 2025, 15, 911. https://doi.org/10.3390/agronomy15040911
Li Z, Liu Z, Zhu J, Wang W, Gao C, Qi J, Qiu X, Bao M, Luo H, Li Y, et al. Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response. Agronomy. 2025; 15(4):911. https://doi.org/10.3390/agronomy15040911
Chicago/Turabian StyleLi, Zhitao, Zhen Liu, Jinyong Zhu, Weilu Wang, Chengwei Gao, Jiangpeng Qi, Xiaoqiang Qiu, Minmin Bao, Hongyu Luo, Yuanming Li, and et al. 2025. "Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response" Agronomy 15, no. 4: 911. https://doi.org/10.3390/agronomy15040911
APA StyleLi, Z., Liu, Z., Zhu, J., Wang, W., Gao, C., Qi, J., Qiu, X., Bao, M., Luo, H., Li, Y., & Liu, Y. (2025). Drought–Rewatering Dynamics in Chinese Cropping Systems: A Meta-Analysis of Yield Loss Mitigation, Water Use Efficiency, and Compensatory Physiological Response. Agronomy, 15(4), 911. https://doi.org/10.3390/agronomy15040911