Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Journal = AppliedChem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1018 KiB  
Article
Removal of Radio and Stable Isotopes of Cobalt and Cesium from Contaminated Aqueous Solutions by Isatin-Derived Ligand
by Riyam N. Khalaf, Sattar S. Ibrahim, Zeinab A. El-Shafiey, Abeer A. Faheim and Hosam M. Saleh
AppliedChem 2025, 5(2), 8; https://doi.org/10.3390/appliedchem5020008 - 3 Apr 2025
Viewed by 24
Abstract
This study investigated the effectiveness of a ligand known as (2-Mercapyo-phenylimino)-1,3-dihydro-indol-2-one-based ligand, in removing stable/radioactive cesium and cobalt from contaminated wastewater. Several parameters, such as contact duration, temperature, adsorbent quantity, pH of the medium, and concentration of adsorbate, have been investigated as primary [...] Read more.
This study investigated the effectiveness of a ligand known as (2-Mercapyo-phenylimino)-1,3-dihydro-indol-2-one-based ligand, in removing stable/radioactive cesium and cobalt from contaminated wastewater. Several parameters, such as contact duration, temperature, adsorbent quantity, pH of the medium, and concentration of adsorbate, have been investigated as primary active parameters impacting the adsorption process. Regarding the stable isotopes, the concentrations of Co2+ and Cs+ were measured before and after the treatment processes using the Optical Emissions Spectroscopy with Inductively Coupled Plasma (ICP-OES) technique. Additionally, kinetic and equilibrium isotherm models were applied to understand the equilibrium data. Both Cs+ and Co2+ were ideally eliminated after 120 and 60 min, respectively. The optimal pH for Cs+ was 6.3, while that for Co2+ was 5. The results indicate that the adsorption process is endothermic for Co2+ and exothermic for Cs+. Three thermodynamic parameters (∆G°, ∆H°, and ∆S°) were calculated. The reported R2 values for the Freundlich and Langmuir models showed that the adsorption process for Cs+ and Co2+ always followed these isotherms, regardless of the temperature used. For Cs+, the maximum single-layer capacity (qmax) was 15.10 mg g−1, while for Co2+, it was 62.11 mg g−1. When the aqueous medium was spiked with both radioisotopes individually, the elimination of 60Co and 134Cs achieved maximum values of 99 and 86%, respectively, within 120 min. It can be concluded that the ligand effectively removed cobalt and cesium from wastewater, with higher adsorption for cobalt. Full article
15 pages, 2522 KiB  
Article
Use of Sorbitan to Extract Capsaicinoids and Bioactive Compounds: Condition Optimization Study
by Andrea de J. Campos-Badillo, Edén A. Luna-Zapién, Juan A. Ascacio-Valdés, Jolanta E. Marszalek, Rafael Minjares-Fuentes, Armando Quintero-Ramos and Jorge A. Meza-Velázquez
AppliedChem 2025, 5(2), 7; https://doi.org/10.3390/appliedchem5020007 - 24 Mar 2025
Viewed by 140
Abstract
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate [...] Read more.
Capsaicinoids obtained from lyophilized serrano chili by sorbitan monooleate solutions were investigated. Sorbitan monooleate was as effective as methanol in extracting capsaicin and dihydrocapsaicin (DHC). Subsequently, a Box–Behnken design was used to optimize capsaicin, DHC, and polyphenol extraction, as well as to evaluate the antioxidant capacity of dehydrated serrano chili. Particle size (PS) (20–60 mesh), processing temperature (55–75 °C), and sorbitan concentration (1.5–2.5%) were selected as independent variables. The statistical analysis showed that the quadratic models adequately describe the response of the concentration of capsaicin and DHC, but not with polyphenols and antioxidant capacity. The highest extraction of capsaicin (~620 mg/100 g dw) and DHC (~520 mg/100 g dw) was achieved with the combination of sorbitan at 2%, temperature at 65 °C, and PS from 40 mesh. Experimental and predicted values were closely consistent. Meanwhile, extracts with the highest antioxidant potential (~7510 and ~5820 µM of Trolox Eq/100 g dw for ABTS and FRAP, respectively) were those extracted in sorbitan and PS from 40 mesh. In contrast, the highest values of polyphenols (~171 mg gallic acid Eq/100 g dw) were found in the extracts prepared at 75 °C. These results suggest that sorbitan monooleate solutions can be an effective, non-toxic, and environmentally responsible way to obtain capsaicinoids and bioactive compounds from dehydrated serrano chili. Full article
Show Figures

Graphical abstract

12 pages, 2627 KiB  
Article
Effects of Li Salt and Additive Content on the Electrochemical Performance of [C4C1mim]-Based Ionic Liquid Electrolytes
by Yayun Zheng, Wenbin Zhou, Kui Cheng and Zhengfei Chen
AppliedChem 2025, 5(1), 6; https://doi.org/10.3390/appliedchem5010006 - 6 Mar 2025
Viewed by 378
Abstract
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this [...] Read more.
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this work, an ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([C4C1mim][TFSA]), characterized by a methyl-substituted C-2 position and a butyl chain, was investigated in various Li+ environments created by different lithium salt concentrations and fluoroethylene carbonate (FEC) additives. Both optimal Li+ concentrations and the addition of reasonable FEC enable the improvement of ionic conductivity to 3.32 mS cm−1 at 25 °C and a maximum electrochemical window of 5.21 V. The ionic liquid electrolyte Li[TFSA]-[C4C1mim][TFSA] at a molar ratio of 2:8 with 5 wt% FEC addition demonstrates excellent thermal stability. The corresponding Li/LiFePO4 cell exhibits a mitigated polarization growth (increasing from 0.12 V to 0.25 V over 10 cycles) with a high initial discharge capacity of 169.3 mAh g−1. Full article
Show Figures

Figure 1

13 pages, 3515 KiB  
Article
Mechanochemical-Activated Organomontmorillonite for Uranium Pollution Protection
by Iryna Kovalchuk, Iryna Farbun, Volodymyr Sydorchuk, Andrey Lakhnik and Olena Diyuk
AppliedChem 2025, 5(1), 5; https://doi.org/10.3390/appliedchem5010005 - 24 Feb 2025
Viewed by 315
Abstract
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified [...] Read more.
The modification of the layered silicate with a structural type 2:1 montmorillonite by the cationic surfactant hexadecyltrimethylammonium bromide was carried out. The obtained organomontmorillonite was milled for 2–25 min in a high-energy planetary ball mill. The structural and physicochemical characteristics of the modified montmorillonite and the mechanochemically activated montmorillonite were investigated using various methods such as X-ray diffraction, thermal analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and determination of the specific surface area as well as the parameters of the porous structure by the low-temperature adsorption–desorption of nitrogen. The modification of montmorillonite with the quaternary ammonium salt led to a slowdown of deformation and subsequent amorphization of the montmorillonite structure during the high-energy milling. Mechanochemical activation of the modified montmorillonite increased its sorption capacity nine times, with the maximum uranium sorption achieved after mechanochemical treatment for 10 min. Full article
Show Figures

Figure 1

11 pages, 545 KiB  
Article
Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice
by Carlos Alberto Márquez-Montes, José Alberto Gallegos-Infante, Guillermo Rodrigo Petzold-Maldonado, Patricio Antonio Orellana-Palma, Rubén Francisco González-Laredo, Nuria Elizabeth Rocha-Guzmán and Martha Rocío Moreno-Jiménez
AppliedChem 2025, 5(1), 4; https://doi.org/10.3390/appliedchem5010004 - 19 Feb 2025
Viewed by 592
Abstract
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use [...] Read more.
The presence of bioactives in prickly pear has been documented, including flavonoids and betalains, which are compounds highly unstable to thermal processing. An alternative to the thermal processing of foods is the use of cryoconcentration. The objective of this work was to use cryoconcentration assisted by centrifugation to obtain prickly pear (Opuntia ficus-indica L. Mill) concentrate from two ecotypes (green and red) and evaluate their impact on the polyphenol profile and betalains. Prickly pear juice was obtained and cryoconcentrated. The process parameters of cryoconcentration were obtained. The highest solute yield (Y) was observed for red prickly pear juice (0.42 ± 0.03 kg solute × kg initial solute−1), but the efficiency (η) did not show differences between ecotypes (green 51.0 ± 7.0 vs. red 55.0 ± 7.0%), physicochemical parameters (pH, titratable acididty, °Bx), reducing sugars, or color. The highest total phenolic content (TPC) (1843 ± 153), total flavonoid content (TFC) (759 ± 17), betanin (801.6 ± 19), and indicaxanthin (453.7 ± 19) were observed in cryoconcentrated red prickly pear juice, while the antioxidant activity (ABTS, FRAP, and ORAC) was higher in cryoconcentrated green prickly pear juice (except ABTS). Betalains showed a high correlation with the ABTS antioxidant results, and the TPC showed a high correlation with the ORAC results. Cryoconcentration technology has a high potential to process prickly pear juice, preserving its bioactives. Full article
Show Figures

Figure 1

14 pages, 3935 KiB  
Article
Thermo-Mechanical Properties of Polypropylene Blends with Esterified Lignin
by Rogerio Ramos de Sousa Junior, Guilherme Elias Saltarelli Garcia, Manuel Patricio da Silva Bisneto, Laura Gouveia de Freitas, Tamiris Basan Hubmann, Túlio Morás Coutinho and Demetrio Jackson dos Santos
AppliedChem 2025, 5(1), 3; https://doi.org/10.3390/appliedchem5010003 - 20 Jan 2025
Viewed by 1007
Abstract
Lignin, a renewable and widely available biopolymer, has been explored as an additive in polyolefins to develop high value-added materials. However, its low compatibility with polymers like polypropylene (PP) often causes poor particle dispersion and compromised mechanical properties. Esterification has proven effective in [...] Read more.
Lignin, a renewable and widely available biopolymer, has been explored as an additive in polyolefins to develop high value-added materials. However, its low compatibility with polymers like polypropylene (PP) often causes poor particle dispersion and compromised mechanical properties. Esterification has proven effective in enhancing lignin-polyolefin interactions. This study evaluated the incorporation of kraft lignin (KL) and maleic anhydride-modified kraft lignin (MAKL) into PP, focusing on lignin dispersion and the blends’ thermal, mechanical, and viscoelastic properties. Thermal analyses showed that MAKL reduced PP crystallinity, indicating improved compatibility, supported by micrographs showing more uniform particle dispersion. Mechanically, low MAKL concentrations maintained yield strength similar to neat PP, while 5 wt% MAKL increased impact strength by up to 148%. This improvement was attributed to enhanced interfacial interaction, reduced crystallinity, and better energy dissipation. The findings demonstrate that esterification of lignin with maleic anhydride effectively overcomes compatibility limitations with PP, leading to significant gains in mechanical and viscoelastic properties. This work advances lignin’s sustainable use in polymer blends, emphasizing its potential as a renewable alternative in material development. Full article
Show Figures

Figure 1

23 pages, 4152 KiB  
Article
Extraction of Carotenoids from Pumpkin (Cucurbita moschata) and Spinach (Spinacia oleracea) Using Environmentally Friendly Deep Eutectic Solvents (DESs)
by Koray Tanrıver, Mehmet Bilgin, Selin Şahin Sevgili, İrem Toprakçı Yüksel and Ebru Kurtulbaş Şahin
AppliedChem 2025, 5(1), 2; https://doi.org/10.3390/appliedchem5010002 - 9 Jan 2025
Viewed by 802
Abstract
The annually wasted amount of food has surpassed 1 billion metric tons. Food waste is considered as an important source for the recovery of bioactive compounds, such as carotenoids. There is a demand for antioxidants, nutraceuticals and natural colorants in various industries and [...] Read more.
The annually wasted amount of food has surpassed 1 billion metric tons. Food waste is considered as an important source for the recovery of bioactive compounds, such as carotenoids. There is a demand for antioxidants, nutraceuticals and natural colorants in various industries and carotenoids are one of the commonly used compounds that fit this description. Pumpkin and spinach waste, whose combined amount is over 2 million metric tons, contains bioactive compounds and these wasted foods could be utilized for the recovery of carotenoids. Carotenoids are hydrophobic molecules; therefore, commercial extraction processes often use highly non-polar solvents, and these are rarely environmentally friendly. The aim of this research was to develop effective extraction processes for carotenoids from pumpkin and spinach using environmentally friendly green chemicals. A series of deep eutectic solvents (DESs) composed with L-menthol and carboxylic aliphatic acids were made for the extraction of carotenoids from pumpkin (Cucurbita moschata) and spinach (Spinacia oleracea) via mechanical mixing–assisted extraction (MMAE) and homogenization-assisted extraction (HAE). Response surface methodology (RSM) and analysis of variance (ANOVA) were used to analyze the data and optimization. The DESs composed from L-menthol and propionic acid had the best effect on the extraction of total carotenoid content (TCC) (represented as β-carotene) from pumpkin and spinach via solutions with 1:2 and 1:4 molar ratios, respectively. The yield of carotenoid extraction is expressed in μg-β-carotene/g of pumpkin or spinach. Under the calculated optimum conditions, the yields are estimated to be 11.528 μg-β-carotene/g-pumpkin for the MMAE method, 8.966 μg-β-carotene/g-pumpkin for the HAE method, 16.924 μg-β-carotene/g-spinach for the MMAE method and 18.870 μg-β-carotene/g-spinach for the HAE method. Full article
Show Figures

Graphical abstract

26 pages, 6302 KiB  
Review
A Comparative Review on Biodegradation of Poly(Lactic Acid) in Soil, Compost, Water, and Wastewater Environments: Incorporating Mathematical Modeling Perspectives
by Narjess Hajilou, Seyed Sepehr Mostafayi, Alexander L. Yarin and Tolou Shokuhfar
AppliedChem 2025, 5(1), 1; https://doi.org/10.3390/appliedchem5010001 - 30 Dec 2024
Cited by 1 | Viewed by 1330
Abstract
As the demand for environmentally friendly materials continues to rise, poly(lactic acid) (PLA) has emerged as a promising alternative to traditional plastics. The present review offers a comprehensive analysis of the biodegradation behavior of PLA in diverse environmental settings, with a specific focus [...] Read more.
As the demand for environmentally friendly materials continues to rise, poly(lactic acid) (PLA) has emerged as a promising alternative to traditional plastics. The present review offers a comprehensive analysis of the biodegradation behavior of PLA in diverse environmental settings, with a specific focus on soil, compost, water, and wastewater environments. The review presents an in-depth comparison of the degradation pathways and kinetics of PLA from 1990 to 2024. As the presence of different microorganisms in diverse environments can affect the mechanism and rate of biodegradation, it should be considered with comprehensive comparisons. It is shown that the mechanism of PLA biodegradation in soil and compost is that of enzymatic degradation, while the dominant mechanisms of degradation in water and wastewater are hydrolysis and biofilm formation, respectively. PLA reveals a sequence of biodegradation rates, with compost showing the fastest degradation, followed by soil, wastewater, accelerated landfill environments, and water environments, in descending order. In addition, mathematical models of PLA degradation were reviewed here. Ultimately, the review contributes to a broader understanding of the ecological impact of PLA, facilitating informed decision-making toward a more sustainable future. Full article
Show Figures

Graphical abstract

17 pages, 7847 KiB  
Article
Electrochemical Analysis of Corrosion Resistance of Manganese-Coated Annealed Steel: Chronoamperometric and Voltammetric Study
by Francisco Augusto Nuñez Pérez
AppliedChem 2024, 4(4), 367-383; https://doi.org/10.3390/appliedchem4040023 - 19 Nov 2024
Viewed by 1351
Abstract
Metal corrosion poses a significant challenge for industries by decreasing the lifespan of materials and escalating maintenance and replacement costs. This study is critically important, as it assesses the corrosion resistance properties of annealed steel wire electrodes coated with manganese, employing chronoamperometry and [...] Read more.
Metal corrosion poses a significant challenge for industries by decreasing the lifespan of materials and escalating maintenance and replacement costs. This study is critically important, as it assesses the corrosion resistance properties of annealed steel wire electrodes coated with manganese, employing chronoamperometry and linear voltammetry techniques. The electrodes were immersed in an electrolyte solution and subjected to chronoamperometry at various voltages (−0.55 V, −0.60 V, and −0.70 V) and durations (60 s and 1800 s). Subsequently, linear voltammetry was performed over a potential range from −0.8 V to 0.8 V to generate Tafel plots. The Butler–Volmer equation was applied to the data obtained to determine the corrosion current density. The results indicate that the optimal conditions for forming a highly effective protective manganese layer occur at a potential of −0.70 V for 1800 s. Under these conditions, the electrodes exhibited superior corrosion resistance. This study also revealed that shorter durations and less negative potentials led to less-effective manganese coatings, with higher corrosion rates and reduced stability. These findings are significant for developing efficient corrosion protection methods in industrial and research applications, providing clear parameters for optimizing the manganese electrodeposition process on annealed steel. Full article
Show Figures

Figure 1

14 pages, 8292 KiB  
Article
Synthesis and Electrochemical Characterization of Ru-Modified Iridium Oxide Catalysts for PEM Electrolysis
by Stanford Chidziva, Dorcas Zide, Joshua John Bambo, Anele Sinto, Sivakumar Pasupathi and Bernard J. Bladergroen
AppliedChem 2024, 4(4), 353-366; https://doi.org/10.3390/appliedchem4040022 - 24 Oct 2024
Viewed by 1441
Abstract
In the search of sustainable energy solutions, proton exchange membrane water electrolyzers (PEMWEs) have emerged as a promising alternative for sustainable clean hydrogen production. This study focuses on synthesis and characterization of Ruthenium (Ru)-modified iridium oxide (IrO2) catalysts. The anode is [...] Read more.
In the search of sustainable energy solutions, proton exchange membrane water electrolyzers (PEMWEs) have emerged as a promising alternative for sustainable clean hydrogen production. This study focuses on synthesis and characterization of Ruthenium (Ru)-modified iridium oxide (IrO2) catalysts. The anode is the principal reason for the high overpotential of PEMWEs and it also greatly increases the cost of the electrolyzers. IrO2 is highly stable and corrosion-resistant, particularly in acidic environments, making it a durable catalyst for the oxygen evolution reaction (OER) in PEMWEs, though it suffers from a relatively high overpotential. Ruthenium oxide (RuO2), on the other hand, is more catalytically active with a lower overpotential, but is less stable under the same conditions. In this study, the goal was to improve the catalytic activity and stability of the anode catalyst, IrO2, through the controlled incorporation of Ru and to reduce overall catalyst cost due to the reduced iridium content. This synergistic combination allows for better performance in terms of conductivity, efficiency, and durability, making Ru-modified IrO2 an ideal catalyst for OER in PEMWE applications. The Adams fusion method was adapted and used to synthesize the catalysts. The modified catalysts were characterized using analytical instruments. These analyses provided insights into the structural, morphological, and electrochemical properties of the Ru-modified IrO2 catalysts. Full article
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Part VI
by Robert J. Meier and Paul R. Rablen
AppliedChem 2024, 4(4), 333-352; https://doi.org/10.3390/appliedchem4040021 - 23 Oct 2024
Viewed by 943
Abstract
In this paper we provide the reader with a ready to use Group Contribution (GC) method for the heat of formation (gaseous state) of organics in the form of an Excel spreadsheet with all data, enabling further predictions, and an accompanying manual on [...] Read more.
In this paper we provide the reader with a ready to use Group Contribution (GC) method for the heat of formation (gaseous state) of organics in the form of an Excel spreadsheet with all data, enabling further predictions, and an accompanying manual on how to use the GC model for predicting the heat of formation for organics. In addition, in order to widen the applicability of the method whilst retaining chemical accuracy compared to our previous publications on this topic, we include further chemical groups including acetals, benzyl ethers, bicyclic hydrocarbons, alkanediols and glycerol, polycyclic aromatic hydrocarbons, aromatic fluoro compounds, and finally several species which we include to illustrate how the GC model can be successfully applied to species we did not consider during the parameterization of the GC model parameters. Full article
Show Figures

Scheme 1

13 pages, 7488 KiB  
Article
Molecular Docking Assessment of Limonoids from Cameroonian Entandrophragma Species as Potential Inhibitors of Anopheles gambiae Acetylcholinesterase (AChE)
by Gervais Mouthé Happi, Sajjad Haider, Sikiru Akinyeye Ahmed and Zaheer Ul-Haq
AppliedChem 2024, 4(4), 320-332; https://doi.org/10.3390/appliedchem4040020 - 22 Oct 2024
Viewed by 1049
Abstract
Malaria remains one of the great killers in tropical regions of the world due to the transmission of the Plasmodium parasite by the bites of the female mosquito Anopheles. The resistance of this species to synthetic insecticides contributes to an increase in [...] Read more.
Malaria remains one of the great killers in tropical regions of the world due to the transmission of the Plasmodium parasite by the bites of the female mosquito Anopheles. The resistance of this species to synthetic insecticides contributes to an increase in the incidence of malaria and therefore necessitates the development of new potent and eco-friendly insecticides. In this study, twelve previously reported limonoids from four Entandrophragma species collected in Cameroon have been computationally evaluated for their Anopheles gambiae AChE inhibitory activity. The docking procedure was carried out through Molecular Operating Environment 2019.01 (MOE), while the UCSF Chimera program was used to model the docking results based on interactions between proteins and ligands, and molecular dynamics trajectories were analyzed using the GROMACS 2021.1 tool. Entandrophragmin and encandollens B and C with docking scores ranging from −6.45 to −7.28 kcal/mol were the most promising hits compared to the reference azadirachtin (−6.22 kcal/mol) and were further evaluated for their mechanism of action. Subsequent evaluation classified encandollen C as the best candidate for the development of new potent eco-friendly insecticides based on its lower average RMSD and RMSF and its compactness over a 150 ns duration with acetylcholinesterase. Full article
Show Figures

Graphical abstract

18 pages, 5630 KiB  
Article
Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials
by Yasmina Khalaf, Peter El Hage, Souha Mansour, Nicolas Brosse, Julia Dimitrova Mihajlova, Anne Bergeret, Patrick Lacroix and Roland El Hage
AppliedChem 2024, 4(3), 302-319; https://doi.org/10.3390/appliedchem4030019 - 23 Sep 2024
Cited by 3 | Viewed by 1512
Abstract
Recycling olive waste, a major by-product of the olive oil industry, presents significant environmental and economic benefits. This study explores the potential of olive waste (OW) by-products, specifically their individual components such as olive stones (OS), olive oily pomace (OS) and olive oil-free [...] Read more.
Recycling olive waste, a major by-product of the olive oil industry, presents significant environmental and economic benefits. This study explores the potential of olive waste (OW) by-products, specifically their individual components such as olive stones (OS), olive oily pomace (OS) and olive oil-free pomace (OF), as sustainable alternatives to wood in eco-friendly composite materials, alongside other residues such as miscanthus, spent mushroom substrate and recycled textile waste. Composite panels were produced with densities ranging from 685 to 907 kg/m3 through thermocompression. The manuscript details the production methodology and assesses the panel’s thermal performance, water absorption, and mechanical strength. The aim is to assess the viability of these alternative materials in producing composites that could serve as environmentally friendly substitutes for traditional wood-based products. Oil-free pomace is a promising and effective alternative to wood, suitable for dry environments. Composite panels composed of miscanthus or spent mushroom substrate and oil-free pomace met the EN 312 standards for general-purpose products in dry conditions, highlighting their potential for use in sustainable applications. Full article
Show Figures

Graphical abstract

20 pages, 5565 KiB  
Article
Biocatalytic Screening of the Oxidative Potential of Fungi Cultivated on Plant-Based Resources
by Alina Kinner, Stephan Lütz and Katrin Rosenthal
AppliedChem 2024, 4(3), 282-301; https://doi.org/10.3390/appliedchem4030018 - 8 Aug 2024
Cited by 1 | Viewed by 1598
Abstract
The environmental impacts of the postindustrial era, which rely on fossil fuels, have compelled a reconsideration of the future of energy and chemical industries. Fungi are a valuable resource for improving a circular economy through the enhanced valorization of biomass and plant waste. [...] Read more.
The environmental impacts of the postindustrial era, which rely on fossil fuels, have compelled a reconsideration of the future of energy and chemical industries. Fungi are a valuable resource for improving a circular economy through the enhanced valorization of biomass and plant waste. They harbor a great diversity of oxidative enzymes, especially in their secretome. Enzymatic breakdown of the plant cell wall complex and lignocellulosic biomass yields sugars for fermentation and biofuel production, as well as aromatic compounds from lignin that can serve as raw materials for the chemical industry. To harness the biocatalytic potential, it is essential to identify and explore wild-type fungi and their secretomes. This study successfully combined genome mining and activity screening to uncover the oxidative potential of a collection of underexploited ascomycetes and basidiomycetes. The heme peroxidase and laccase activities of four promising candidates, Bipolaris victoriae, Colletotrichum sublineola, Neofusicoccum parvum and Moesziomyces antarcticus, were investigated to gain a deeper insight into their enzyme secretion. Furthermore, a plant-based medium screening with the phytopathogen C. sublineola revealed that soybean meal is a beneficial component to trigger the production and secretion of enzymes that catalyze H2O2-dependent oxidations. These results demonstrate that understanding fungal secretomes and their enzymatic potential opens exciting avenues for sustainable biotechnological applications across various industries. Full article
Show Figures

Figure 1

12 pages, 3515 KiB  
Article
Effect of Crystallization on Electrochemical and Tribological Properties of High-Velocity Oxygen Fuel (HVOF)-Sprayed Fe-Based Amorphous Coatings
by Abdul Qadir Abbas, Muhammad Arslan Hafeez, Cheng Zhang, Muhammad Atiq-ur-Rehman and Muhammad Yasir
AppliedChem 2024, 4(3), 270-281; https://doi.org/10.3390/appliedchem4030017 - 29 Jul 2024
Viewed by 1419
Abstract
An Fe-based amorphous coating, with the composition Fe48Cr15Mo14C15B6Y2, was synthesized by the high-velocity oxygen fuel spray (HVOF) process on a substrate of AISI 1035. The effect of crystallization on the electrochemical [...] Read more.
An Fe-based amorphous coating, with the composition Fe48Cr15Mo14C15B6Y2, was synthesized by the high-velocity oxygen fuel spray (HVOF) process on a substrate of AISI 1035. The effect of crystallization on the electrochemical and tribological properties of the HVOF-sprayed Fe-based coating was systematically studied. The XRD results validated the fully amorphous nature of the as-sprayed coating by showing a broad peak at 43.44° and crystallization of this coating after heat-treatment at 700 °C by demonstrating sharp peaks of Fe-, Mo-, and Cr-based carbides. After crystallization, an increase in the corrosion current density from 4.95 μAcm−2 to 11.57 μAcm−2 and in the corrosion rate from 4.28 mpy to 9.99 mpy, as well as a decrease in the polarization resistance from 120 Ωcm2 to 65.12 Ωcm2, were observed, indicating the deterioration of the corrosion resistance of the as-sprayed Fe-based coating. This can be attributed to the formation of porous ferrous oxide, providing an easy channel for charge transfer and promoting pit formation. However, a decrease in the coefficient of friction from 0.1 to 0.05 was observed, highlighting the significant improvement in the wear resistance of the Fe-based coating after crystallization. This can be associated with the precipitation of hard carbides (MxCy) at the boundaries of the crystallized regions. Full article
Show Figures

Figure 1

Back to TopTop