Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Journal = JNT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3131 KiB  
Review
Advanced Nanoparticles in Combating Antibiotic Resistance: Current Innovations and Future Directions
by Dana Mohammed AlQurashi, Tayf Fahad AlQurashi, Raneia Idrees Alam, Sumera Shaikh and Mariam Abdulaziz M. Tarkistani
J. Nanotheranostics 2025, 6(2), 9; https://doi.org/10.3390/jnt6020009 - 23 Mar 2025
Viewed by 456
Abstract
Antibiotic resistance poses a significant global health challenge, undermining the effectiveness of conventional treatments and increasing mortality rates worldwide. Factors such as the overuse and misuse of antibiotics in healthcare and agriculture, along with poor infection control practices, have accelerated the emergence of [...] Read more.
Antibiotic resistance poses a significant global health challenge, undermining the effectiveness of conventional treatments and increasing mortality rates worldwide. Factors such as the overuse and misuse of antibiotics in healthcare and agriculture, along with poor infection control practices, have accelerated the emergence of resistant bacterial strains. The stagnation in the development of new antibiotics, compounded by economic and biological challenges, has necessitated alternative approaches to combat resistant infections. Nanotechnology provides a promising solution using nanoparticles (NPs), which combat bacteria through mechanisms like membrane disruption and reactive oxygen species (ROS) generation. Metal-based nanoparticles such as silver and zinc oxide possess intrinsic antimicrobial properties, while polymer- and carbon-based nanoparticles enhance drug delivery and biofilm penetration. Unlike conventional antibiotics, nanoparticles operate through multi-mechanistic pathways, reducing the likelihood of resistance development and improving treatment efficacy. This review aims to provide an updated, in-depth look at recent advances in nanoparticle research targeting antibiotic resistance, discussing different types of nanoparticles, mechanisms of action, and current challenges and opportunities. By exploring the evolving role of nanotechnology in addressing this crisis, this review intends to highlight the potential for nanoparticles to transform the treatment landscape for resistant bacterial infections and inspire further research into these innovative solutions. Full article
(This article belongs to the Special Issue Carbon Nanomaterials as Nano-Theranostic Tools in Disease Treatment)
Show Figures

Figure 1

55 pages, 4519 KiB  
Review
IR780-Based Nanotheranostics and In Vivo Effects: A Review
by Márcia Célia Pacheco Fialho, Maria Alice de Oliveira, Marina Guimarães Carvalho Machado, Carlos Marchiorio Lacerda and Vanessa Carla Furtado Mosqueira
J. Nanotheranostics 2025, 6(1), 8; https://doi.org/10.3390/jnt6010008 - 7 Mar 2025
Viewed by 885
Abstract
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo [...] Read more.
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo fluorescence monitoring studies in the near-infrared (NIR) spectrum. The current literature is abundant on this topic, particularly with applications in the treatment of different types of cancer using laser illumination to produce photodynamic (PDT), photothermal (PTT), and, more recently, sonodynamic therapy (SDT) approaches for cell death. This review aims to update the state of the art concerning IR780 photosensitizer as a theranostic agent for PDT, PTT, SDT, and photoacoustic (PA) effects, and fluorescence imaging monitoring associated with different types of nanocarriers. The literature update concerns a period from 2017 to 2024, considering, more specifically, the in vivo effects found in preclinical experiments. Some aspects of the labeling stability of nanostructured systems will be discussed based on the evidence of IR780 leakage from the nanocarrier and its consequences for the reliable analysis of biological data. Full article
Show Figures

Graphical abstract

35 pages, 6526 KiB  
Review
Interplay Between Diabetes, Obesity and Glioblastoma Multiforme, and the Role of Nanotechnology in Its Treatment
by Sourav De, Sabyasachi Banerjee, Gourab Dey, Subhasis Banerjee and S.K. Ashok Kumar
J. Nanotheranostics 2025, 6(1), 7; https://doi.org/10.3390/jnt6010007 - 27 Feb 2025
Viewed by 559
Abstract
A very aggressive and deadly brain cancer, glioblastoma multiforme (GBM) poses formidable obstacles to effective therapy. Despite advancements in conventional therapies like surgery, chemotherapy, and radiation therapy, the prognosis for GBM patients remains poor, with limited survival outcomes. Nanotechnology is gaining popularity as [...] Read more.
A very aggressive and deadly brain cancer, glioblastoma multiforme (GBM) poses formidable obstacles to effective therapy. Despite advancements in conventional therapies like surgery, chemotherapy, and radiation therapy, the prognosis for GBM patients remains poor, with limited survival outcomes. Nanotechnology is gaining popularity as a promising platform for managing GBM, offering targeted drug delivery, improved therapeutic efficacy, and reduced systemic toxicity. This review offers a comprehensive analysis of the current therapeutic approach for GBM using nanotechnology-based interventions. This study explored various nanocarrier (NC) systems like polymeric nanoparticles, liposomes, dendrimers, polymeric micelles, and mesoporous silica nanoparticles for improved precision as well as efficacy in encapsulating and delivering therapeutic agents to GBM tumors. Methods for improving drug delivery into GBM cells are described in this study, including novel delivery modalities such as convection-enhanced delivery, intranasal administration, magnetic hyperthermia, peptide-guided nanoparticles, and immune liposomes. It also explores the influence of diabetes and obesity on GBM prognosis and survival rates, suggesting that managing glucose levels and using metformin may improve patient outcomes. The discussion focuses on the advancements in nanotechnology-enabled GBM therapy, highlighting the challenges and opportunities in implementing these promising technologies in clinical practice. The study highlights the potential of nanotechnology and metabolic modulation in transforming GBM treatment strategies. To further understand how these factors impact GBM patients and develop innovative nanotechnology-based treatments for GBM and diabetes mellitus, more study is necessary. Full article
Show Figures

Figure 1

23 pages, 728 KiB  
Review
Nanomedicine: Transforming the Management of Ocular Neuroinflammatory and Neurodegenerative Diseases
by Georgia Savvidou, Ellas Spyratou, Maria-Eleni Zachou and Efstathios P. Efstathopoulos
J. Nanotheranostics 2025, 6(1), 6; https://doi.org/10.3390/jnt6010006 - 22 Feb 2025
Viewed by 363
Abstract
Nanomedicine is emerging as a groundbreaking strategy for the management of the neuro-visual symptoms of neuroinflammatory and neurodegenerative diseases. This innovative field of study leverages nanoscale materials and technologies to improve drug delivery, enabling targeted treatments to reach the affected ocular tissues. By [...] Read more.
Nanomedicine is emerging as a groundbreaking strategy for the management of the neuro-visual symptoms of neuroinflammatory and neurodegenerative diseases. This innovative field of study leverages nanoscale materials and technologies to improve drug delivery, enabling targeted treatments to reach the affected ocular tissues. By facilitating the transport of therapeutic agents across the blood–retinal barrier and boosting their bioavailability, nanomedicine holds the potential to significantly mitigate the symptoms of conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), etc. This review summarizes the latest developments in nanomedicine applications for the management of these ocular conditions, highlighting their capacity to foster more effective disease diagnosis and treatment. Full article
Show Figures

Figure 1

17 pages, 4561 KiB  
Article
Sustained Nitric Oxide Release Using Hybrid Magnetic Nanoparticles for Targeted Therapy: An Investigation via Electron Paramagnetic Resonance
by Rawan Salami, Ronit Lavi, Yifat Harel, Esthy Levy, Jean Paul Lellouche, Svetlana Gelperina and Rachel Persky
J. Nanotheranostics 2025, 6(1), 5; https://doi.org/10.3390/jnt6010005 - 4 Feb 2025
Viewed by 662
Abstract
This research describes the development and thorough characterization of a novel, versatile, and biocompatible hybrid nanocarrier of the NO-releasing agent NOC-18, with a specific focus on optimizing the purification process. In this study, we focused on the sustained release of NO using biocompatible [...] Read more.
This research describes the development and thorough characterization of a novel, versatile, and biocompatible hybrid nanocarrier of the NO-releasing agent NOC-18, with a specific focus on optimizing the purification process. In this study, we focused on the sustained release of NO using biocompatible and diagnostic hybrid magnetic nanoparticles (hMNPs) containing cerium-doped maghemite (CM) NPs, embedded within human serum albumin (HSA) protein. A comprehensive study was conducted using electron paramagnetic resonance (EPR) alongside the Griess assay to evaluate NO release from the chosen NO donor, NOC-18, and to assess the limitations of the molecule under various reaction conditions, identifying the optimal conditions for binding NOC-18 with minimal NO loss. Two types of particles were designed: In-hMNPs, where NOC-18 is encapsulated within the particles, and Out-hMNPs, where NOC-18 is attached onto the surface. Our results demonstrated that In-hMNPs provided a sustained and prolonged release of NO (half-life, 50 h) compared to the rapid release for the Out-hMNPs, likely due to the strong bonds formed with cerium, which helped to stabilize the NO molecules. These results represent a promising approach to designing a dual-function agent that combines contrast properties for tumor MRI with the possibility of increasing the permeability of tumor vasculature. The employment of this dual-function agent in combination with nanotherapeutics could improve the latter’s efficacy by facilitating their access to the tumor. Full article
Show Figures

Graphical abstract

65 pages, 16891 KiB  
Review
Nanozyme-Based Cancer Nanotheranostics: Emerging Applications and Challenges in Brain Cancer Therapeutics
by Alexandra A. P. Mansur and Herman S. Mansur
J. Nanotheranostics 2025, 6(1), 4; https://doi.org/10.3390/jnt6010004 - 31 Jan 2025
Viewed by 953
Abstract
Regrettably, despite undeniable advances in cancer diagnosis and therapy, primary brain cancer (or brain cancer) remains one of the deadliest forms of malignant tumors, where glioblastoma (GBM) is known as the most malignant diffuse glioma of astrocytic lineage. Fortunately, to improve this scenario, [...] Read more.
Regrettably, despite undeniable advances in cancer diagnosis and therapy, primary brain cancer (or brain cancer) remains one of the deadliest forms of malignant tumors, where glioblastoma (GBM) is known as the most malignant diffuse glioma of astrocytic lineage. Fortunately, to improve this scenario, remarkable progress in nanotechnology has brought new promise and raised expectations in cancer treatment. Nanomedicine, principally an area amalgamating nanotechnology with biology and medicine, has demonstrated a pivotal role, starting with the earliest detection and diagnosis while also offering novel multimodal cancer therapy alternatives. In the vast realm of nanotechnology, nanozymes, a type of nanomaterial with intrinsic enzyme-like activities and characteristics connecting the fields of nanocatalysts, enzymology, and biology, have emerged as powerful nanotools for cancer theranostics. Hence, this fascinating field of research has experienced exponential growth in recent years. As it is virtually impossible to cover all the literature on this broad domain of science in one paper, this review focuses on presenting a multidisciplinary approach, with its content extending from fundamental knowledge of nanozymes and enzyme-mimicking catalysis to the most recent advances in nanozymes for therapy targeting brain cancers. Although we are at the very early stages of research, it can be envisioned that the strategic development of nanozymes in brain cancer theranostics will positively offer disruptive nanoplatforms for future nano-oncology. Full article
Show Figures

Graphical abstract

8 pages, 885 KiB  
Opinion
From Traditional Nanoparticles to Cluster-Triggered Emission Polymers for the Generation of Smart Nanotheranostics in Cancer Treatment
by Cristina Blasco-Navarro, Carlos Alonso-Moreno and Iván Bravo
J. Nanotheranostics 2025, 6(1), 3; https://doi.org/10.3390/jnt6010003 - 22 Jan 2025
Viewed by 815
Abstract
Nanotheranostics integrates diagnostic and therapeutic functionalities using nanoscale materials, advancing personalized medicine by enhancing treatment precision and reducing adverse effects. Key materials for nanotheranostics include metallic nanoparticles, quantum dots, carbon dots, lipid nanoparticles and polymer-based nanocarriers, each offering unique benefits alongside specific challenges. [...] Read more.
Nanotheranostics integrates diagnostic and therapeutic functionalities using nanoscale materials, advancing personalized medicine by enhancing treatment precision and reducing adverse effects. Key materials for nanotheranostics include metallic nanoparticles, quantum dots, carbon dots, lipid nanoparticles and polymer-based nanocarriers, each offering unique benefits alongside specific challenges. Polymer-based nanocarriers, including hybrid and superparamagnetic nanoparticles, improve stability and functionality but are complex to manufacture. Polymeric nanoparticles with aggregation-induced emission (AIE) present promising theranostic potential for cancer detection and treatment. However, challenges such as translating the AIE concept to living systems, addressing toxicity concerns, overcoming deep-tissue imaging limitations, or ensuring biocompatibility remain to be resolved. Recently, cluster-triggered emission (CTE) polymers have emerged as innovative materials in nanotheranostics, offering enhanced fluorescence and biocompatibility. These polymers exhibit increased fluorescence intensity upon aggregation, making them highly sensitive for imaging and therapeutic applications. CTE nanoparticles, crafted from biodegradable polymers, represent a safer alternative to traditional nanotheranostics that rely on embedding conventional fluorophores or metal-based agents. This advancement significantly reduces potential toxicity while enhancing biocompatibility. The intrinsic fluorescence allows real-time monitoring of drug distribution and activity, optimizing therapeutic efficacy. Despite their potential, these systems face challenges such as maintaining stability under physiological conditions and addressing the need for comprehensive safety and efficacy studies to meet clinical and regulatory standards. Nevertheless, their unique properties position CTE nanoparticles as promising candidates for advancing theranostic strategies in personalized medicine, bridging diagnostic and therapeutic functionalities in innovative ways. Full article
Show Figures

Figure 1

9 pages, 1835 KiB  
Article
PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles
by Galina M. Proshkina, Elena I. Shramova, Ekaterina V. Serova, Egor A. Myachev, Aziz B. Mirkasymov, Sergey M. Deyev and Alexander B. Kotlyar
J. Nanotheranostics 2025, 6(1), 2; https://doi.org/10.3390/jnt6010002 - 4 Jan 2025
Viewed by 944
Abstract
Targeting HER2-positive cancer cells with precision therapies is a critical challenge in oncology. Here, we present a study on gold nanoparticles (AuNPs) conjugated with DARPin_9-29, a designed ankyrin repeat protein with high specificity and affinity for HER2 receptors. In this study, we investigate [...] Read more.
Targeting HER2-positive cancer cells with precision therapies is a critical challenge in oncology. Here, we present a study on gold nanoparticles (AuNPs) conjugated with DARPin_9-29, a designed ankyrin repeat protein with high specificity and affinity for HER2 receptors. In this study, we investigate the therapeutic potential of AuNP-DARPin_9-29 conjugates, which was synthesized and characterized by us earlier, for photothermal therapy (PTT). By combining AuNP-DARPin treatment with visible light illumination, we show selective inhibition of HER2-positive cancer cell proliferation and tumor progression in a murine model. The results highlight the effectiveness of AuNP-DARPin in disrupting cancer cell viability and reducing tumor growth, providing a cost-effective and targeted approach for combating HER2-positive cancers. Full article
Show Figures

Figure 1

23 pages, 2221 KiB  
Review
Carbon Dots: New Rising Stars in the Carbon Family for Diagnosis and Biomedical Applications
by Muneeb Ullah, Uzma Azeem Awan, Haider Ali, Abdul Wahab, Shahid Ullah Khan, Muhammad Naeem, Muhammad Ruslin, Apon Zaenal Mustopa and Nurhasni Hasan
J. Nanotheranostics 2025, 6(1), 1; https://doi.org/10.3390/jnt6010001 - 28 Dec 2024
Cited by 3 | Viewed by 1719
Abstract
Carbon dots (CDs) are a class of carbon-based nanomaterials undergoing rapid development with broad potential applications across diverse biomedical fields. These materials are highly attractive for diagnostics, therapeutics, and nanomedicine due to their remarkable optical and physicochemical properties, including photoluminescence, biocompatibility, and aqueous [...] Read more.
Carbon dots (CDs) are a class of carbon-based nanomaterials undergoing rapid development with broad potential applications across diverse biomedical fields. These materials are highly attractive for diagnostics, therapeutics, and nanomedicine due to their remarkable optical and physicochemical properties, including photoluminescence, biocompatibility, and aqueous dispersibility. CDs can be synthesized using various techniques, ranging from top-down to bottom-up approaches. Among these, biogenic synthesis, utilizing natural sources and waste materials, presents an eco-friendly and sustainable alternative. CDs have exhibited considerable promise in diagnostics, especially with bioimaging and biosensing, providing both high sensitivity and precise identification. CDs are presently being investigated in the pharmaceutical sector for their potential applications in cancer and infection treatment, as well as in photodynamic and thermal therapies. The advancement of CD composites, through enhanced functionality and broader application, facilitates novel research in nanomedicine. This article highlights the advantages of CDs, focusing on their structural properties, classification, and versatility in synthesis methods. Furthermore, the safety and toxicity profiles of CDs are critically analyzed. In conclusion, the innocuity, adaptability, and multifunctionality of CDs position them as a cornerstone in the advancement of nanotechnology and biomedical applications. With their broad applicability and promising potential, CDs stand poised to drive significant innovation across diagnostics, therapeutics, and other domains, heralding a new era in nanomedicine and sustainable material development. Full article
(This article belongs to the Special Issue Carbon Nanomaterials as Nano-Theranostic Tools in Disease Treatment)
Show Figures

Graphical abstract

20 pages, 4965 KiB  
Review
Application of Metal Oxide Nanoparticles in Different Carcinomas
by Nutan Rani, Yousuf Khan, Sapna Yadav, Kalawati Saini and Dipak Maity
J. Nanotheranostics 2024, 5(4), 253-272; https://doi.org/10.3390/jnt5040015 - 20 Dec 2024
Cited by 1 | Viewed by 1180
Abstract
Metal oxide nanoparticles (MONPs) have recently attracted much attention from researchers due to their use in cancer chemotherapy, targeted drug delivery, and diagnosis/MRI imaging. Various studies have demonstrated that different metal oxide NPs show cytotoxic effects by inducing apoptosis in cancerous cells and [...] Read more.
Metal oxide nanoparticles (MONPs) have recently attracted much attention from researchers due to their use in cancer chemotherapy, targeted drug delivery, and diagnosis/MRI imaging. Various studies have demonstrated that different metal oxide NPs show cytotoxic effects by inducing apoptosis in cancerous cells and do not have any toxic impact on normal cells. The mechanism of cytotoxicity is shown through reactive oxygen species (ROS) generated by (MONPs) in the cancerous cell. In vitro and in vivo studies reveal that in some cases metal oxide NPs are used alone and somewhere these NPs are used in combination with other therapies such as photodynamic therapy and with anticancer nanomedicines as drug carriers or drug conjugates. The phenomenon of enhanced permeability and retention (EPR) effect has been the basis of targeted drug delivery to cancerous tumors. Finally, we also provide a simple and comparative analysis of the major apoptosis pathways proposed to increase beginner understanding of anti-cancer nanomaterials. Herein, we have reviewed the most important antitumor results obtained with different metal oxide nanoparticles such as ZnO, Fe2O3/Fe3O4, CuO/Cu2O, TiO2, CeO2, and HfO2, respectively. These NPs can be applied to treat cancer by either passive or active processes. A passive process uses the enhanced permeability and retention (EPR) effect. Superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic and physiochemical properties have been used in magnetic fluid hyperthermia (MFH) and magnetic resonance imaging (MRI) in vitro as well as in vivo. Now, the research has reached the stage of clinical trials for the treatment of various types of cancer. ZnO NPs have been used very vastly in cytotoxic as well as in targeted drug delivery. These NPs are also used for loading anticancer drugs such as doxorubicin. Herein, in this review, we have examined current advances in utilizing MONPs and their analogs as cancer therapeutic, diagnostic, and drug-delivery agents. Full article
Show Figures

Graphical abstract

25 pages, 13479 KiB  
Review
Advances in Photothermal and Photodynamic Nanotheranostics for Precision Cancer Treatment
by Hossein Omidian and Sumana Dey Chowdhury
J. Nanotheranostics 2024, 5(4), 228-252; https://doi.org/10.3390/jnt5040014 - 13 Dec 2024
Viewed by 996
Abstract
Nanotheranostics, combining photothermal therapy (PTT) and photodynamic therapy (PDT), can transform precision cancer treatment by integrating diagnosis and therapy into a single platform. This review highlights recent advances in nanomaterials, drug delivery systems, and stimuli-responsive mechanisms for effective PTT and PDT. Multifunctional nanoparticles [...] Read more.
Nanotheranostics, combining photothermal therapy (PTT) and photodynamic therapy (PDT), can transform precision cancer treatment by integrating diagnosis and therapy into a single platform. This review highlights recent advances in nanomaterials, drug delivery systems, and stimuli-responsive mechanisms for effective PTT and PDT. Multifunctional nanoparticles enable targeted delivery, multimodal imaging, and controlled drug release, overcoming the challenges posed by tumor microenvironments. Emerging approaches such as hybrid therapies and immune activation further enhance therapeutic efficacy. This paper discusses the limitations of nanotheranostics, including synthesis complexity and limited tissue penetration, and explores future directions toward biocompatible, scalable, and clinically translatable solutions. Full article
Show Figures

Figure 1

16 pages, 4799 KiB  
Article
Exploring the Role of Fibroblasts in Promoting Neuroblastoma Cell Migration and Invasion
by Diana Corallo, Cristina Nardelli, Marcella Pantile, Sara Menegazzo, Alessandra Biffi and Sanja Aveic
J. Nanotheranostics 2024, 5(4), 212-227; https://doi.org/10.3390/jnt5040013 - 8 Dec 2024
Viewed by 944
Abstract
Neuroblastoma, the most common pediatric extracranial solid tumor, arises from the malignant transformation of neural crest progenitors in the peripheral nervous system. Its clinical and genetic heterogeneity poses significant challenges, especially in high-risk patients with metastatic disease. Two plastic neuroblastoma cell phenotypes, adrenergic [...] Read more.
Neuroblastoma, the most common pediatric extracranial solid tumor, arises from the malignant transformation of neural crest progenitors in the peripheral nervous system. Its clinical and genetic heterogeneity poses significant challenges, especially in high-risk patients with metastatic disease. Two plastic neuroblastoma cell phenotypes, adrenergic (ADR) and mesenchymal (MES), have been identified. Notably, MES neuroblastoma cells exhibit increased migration and chemoresistance. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment further promote tumor aggressiveness by enhancing cancer cell proliferation, extracellular matrix remodeling, angiogenesis and metastasis. This study explored the role of non-activated fibroblasts in ADR and MES neuroblastoma cell proliferation, migration and invasion in vitro and in vivo. Results showed that MES and ADR neuroblastoma cells influenced fibroblast activation into CAFs differently, with MES cells promoting a more invasive environment leading to tumor spread. These findings enhance our understanding of how ADR and MES phenotypes contribute to the formation of a pro-metastatic niche by activating fibroblasts in CAFs. This insight could inform new therapeutic strategies targeting the tumor microenvironment to prevent neuroblastoma metastasis. Full article
Show Figures

Figure 1

24 pages, 951 KiB  
Review
Characteristics and Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers
by Marjorie de Carvalho Vieira Queiroz and Luís Alexandre Muehlmann
J. Nanotheranostics 2024, 5(4), 188-211; https://doi.org/10.3390/jnt5040012 - 25 Nov 2024
Cited by 1 | Viewed by 2590
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as promising systems for delivering active ingredients. They are derived from physiological, biodegradable, and biocompatible lipids, offering benefits such as sustained release promotion and increased drug stability. These systems are apt for [...] Read more.
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as promising systems for delivering active ingredients. They are derived from physiological, biodegradable, and biocompatible lipids, offering benefits such as sustained release promotion and increased drug stability. These systems are apt for the efficient transport of therapeutic drugs to target tissues while also providing advantages such as facilitating large-scale industrial production, bioavailability, and protection against degradation. The preparation of these nanoparticles involves utilizing diverse types of lipids, surfactants, and solvents. Common lipid varieties encompass triglycerides, steroids, and fatty acids, selected based on the active ingredient for stabilization within the lipid matrix. Preparation methods can be categorized into high-energy and low-energy approaches. This study investigated the differences between the main methodologies used, comparing SLN and NLC systems, and scrutinizing their respective advantages, disadvantages, and applications. Full article
Show Figures

Figure 1

21 pages, 4519 KiB  
Review
Nanotechnology-Enhanced Orthopaedic Surgery
by Alexander Shao-Rong Pang, Zi Qiang Glen Liau, Jacob Yoong-Leong Oh and Dinesh Kumar Srinivasan
J. Nanotheranostics 2024, 5(4), 167-187; https://doi.org/10.3390/jnt5040011 - 13 Nov 2024
Viewed by 1612
Abstract
Nanomaterials hold significant promise for the future of orthopaedic implants due to their ability to mimic the nanoscale components of the bone, such as collagen fibrils and hydroxyapatite. Nanomaterials can regulate cell behaviour while offering mechanical strength and biocompatibility, making them ideal for [...] Read more.
Nanomaterials hold significant promise for the future of orthopaedic implants due to their ability to mimic the nanoscale components of the bone, such as collagen fibrils and hydroxyapatite. Nanomaterials can regulate cell behaviour while offering mechanical strength and biocompatibility, making them ideal for bone repair and tissue regeneration. This comprehensive review explores the key existing and potential applications of nanotechnology in orthopaedics, including bone tissue engineering, drug delivery systems, systems combatting implant-related infections, and the surface preparation of implants to enhance osseointegration. These innovations are poised to revolutionise orthopaedic care by improving implant durability, reducing infection risks, and promoting bone regeneration to deliver personalised treatment and create better patient outcomes. Full article
Show Figures

Graphical abstract

34 pages, 2567 KiB  
Review
Drug Delivery Systems for Infectious Eye Diseases: Advancements and Prospects
by Binapani Mahaling, Namrata Baruah and Aumreetam Dinabandhu
J. Nanotheranostics 2024, 5(4), 133-166; https://doi.org/10.3390/jnt5040010 - 6 Oct 2024
Cited by 1 | Viewed by 2690
Abstract
Infectious ocular diseases like keratitis, conjunctivitis, and endophthalmitis pose significant clinical challenges due to the complexities of delivering drugs to the eye. Recent advancements in drug delivery systems offer promising improvements for treating these conditions. Key strategies include targeted delivery through physicochemical modifications, [...] Read more.
Infectious ocular diseases like keratitis, conjunctivitis, and endophthalmitis pose significant clinical challenges due to the complexities of delivering drugs to the eye. Recent advancements in drug delivery systems offer promising improvements for treating these conditions. Key strategies include targeted delivery through physicochemical modifications, magnetic nanoparticles, and ligand-receptor interactions. This review explores the safety and biocompatibility of ocular drug delivery systems through in vivo ocular toxicity studies, in vitro cytotoxicity assays, hemocompatibility studies, ocular tolerance tests, and genotoxicity assays. It also examines combination therapies and stimuli-responsive delivery systems for their potential to enhance therapeutic efficacy. Furthermore, we discuss tailored and optimized drug delivery approaches for infectious ocular diseases, outlining current challenges and future directions for developing effective ocular drug delivery systems. Full article
Show Figures

Figure 1

Back to TopTop