Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Journal = Instruments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2291 KiB  
Article
Real-Time Coordinate Estimation for SCARA Robots in PCB Repair Using Vision and Laser Triangulation
by Nuwan Sanjeewa, Vimukthi Madushan Wathudura, Nipun Shantha Kahatapitiya, Bhagya Nathali Silva, Kasun Subasinghage and Ruchire Eranga Wijesinghe
Instruments 2025, 9(2), 7; https://doi.org/10.3390/instruments9020007 (registering DOI) - 7 Apr 2025
Abstract
The Printed Circuit Board (PCB) manufacturing industry is a rapidly expanding sector, fueled by advanced technologies and precision-oriented production processes. The placement of Surface-Mount Device (SMD) components in PCB assembly is efficiently automated using robots and design software-generated coordinate files; however, the PCB [...] Read more.
The Printed Circuit Board (PCB) manufacturing industry is a rapidly expanding sector, fueled by advanced technologies and precision-oriented production processes. The placement of Surface-Mount Device (SMD) components in PCB assembly is efficiently automated using robots and design software-generated coordinate files; however, the PCB repair process remains significantly more complex and challenging. Repairing faulty PCBs, particularly replacing defective SMD components, requires high precision and significant manual expertise, making automated solutions both rare and difficult to implement. This study introduces a novel real-time machine vision-based coordinate estimation system designed for estimating the coordinates of SMD components during soldering or desoldering tasks. The system was specifically designed for Selective Compliance Articulated Robot Arm (SCARA) robots to overcome the challenges of repairing miniature PCB components. The proposed system integrates Image-Based Visual Servoing (IBVS) for precise X and Y coordinate estimation and a simplified laser triangulation method for Z-axis depth estimation. The system demonstrated accuracy rates of 98% for X and Y axes and 99% for the Z axis, coupled with high operational speed. The developed solution highlights the potential for automating PCB repair processes by enabling SCARA robots to execute precise picking and placement tasks. When equipped with a hot-air gun as the end-effector, the system could enable automated soldering and desoldering, effectively replacing faulty SMD components without human intervention. This advancement has the potential to bridge a critical gap in the PCB repair industry, improving efficiency and reducing dependence on manual expertise. Full article
Show Figures

Figure 1

18 pages, 7771 KiB  
Article
Novel Smart Glove for Ride Monitoring in Light Mobility
by Michela Borghetti, Nicola Francesco Lopomo and Mauro Serpelloni
Instruments 2025, 9(1), 6; https://doi.org/10.3390/instruments9010006 - 18 Mar 2025
Viewed by 278
Abstract
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting [...] Read more.
Ensuring comfort in light mobility is a crucial aspect for supporting individuals’ well-being and safety while driving scooters, riding bicycles, etc. In fact, factors such as the hand grip on the handlebar, positions of the wrist and arm, overall body posture, and affecting vibrations play key roles. Wearable systems offer the ability to noninvasively monitor physiological parameters, such as body temperature and heart rate, aiding in personalized comfort assessment. In this context, user positions while driving or riding are, on the other hand, more challenging to monitor ecologically. Developing effective smart gloves as a support for comfort and movement monitoring introduces technical complexities, particularly in sensor selection and integration. Light and flexible sensors can help in this regard by ensuring reliable sensing and thus addressing the optimization of the comfort for the driver. In this work, a novel wireless smart glove is proposed, integrating four bend sensors, four force-sensitive sensors, and one inertial measurement unit for measuring the finger movements, hand orientation, and the contact force exerted by the hand while grasping the handlebar during driving or riding. The smart glove has been proven to be repeatable (1.7%) and effective, distinguishing between different grasped objects, such as a flask, a handlebar, a tennis ball, and a small box. Additionally, it proved to be a valuable tool for monitoring specific actions while riding bicycles, such as braking, and for optimizing the posture during the ride. Full article
Show Figures

Figure 1

8 pages, 1570 KiB  
Communication
Special Considerations for Helium-Filled Ion Chambers
by Steve M. Heald
Instruments 2025, 9(1), 5; https://doi.org/10.3390/instruments9010005 - 1 Mar 2025
Viewed by 435
Abstract
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated [...] Read more.
As the flux at synchrotron radiation beamlines increases, helium-filled ion chambers are more common to avoid saturation and non-linearities. For helium, this paper will show that the conversion of the current to flux is best performed using the mass-energy cross-section but is complicated by a strong interaction of scattered photons with the ion chamber plates. This makes the conversion highly dependent on the ion chamber geometry, and an accurate flux determination will typically require a calibration. To minimize the sensitivity of the calibration to external influences, it is proposed to add internal scatter baffles to the standard chamber configuration. Full article
Show Figures

Figure 1

17 pages, 3699 KiB  
Article
A Systematic Investigation of Beam Losses and Position-Reconstruction Techniques Measured with a Novel oBLM at CLEAR
by Montague King, Sara Benitez, Alexander Christie, Ewald Effinger, Jose Esteban, Wilfrid Farabolini, Antonio Gilardi, Pierre Korysko, Jean Michel Meyer, Belen Salvachua, Carsten P. Welsch and Joseph Wolfenden
Instruments 2025, 9(1), 4; https://doi.org/10.3390/instruments9010004 - 28 Feb 2025
Viewed by 407
Abstract
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using [...] Read more.
Optical Beam-Loss Monitors (oBLMs) allow for cost-efficient and spatially continuous measurements of beam losses at accelerator facilities. A standard oBLM consists of several tens of metres of optical fibre aligned parallel to a beamline, coupled to photosensors at either or both ends. Using the timing information from loss signals, the loss positions can be reconstructed. This paper presents a novel oBLM system recently deployed at the CERN Linear Electron Accelerator for Research (CLEAR). Multiple methods of extracting timing and position information from measured waveforms with silicon photomultipliers (SiPM) and photomultiplier tubes (PMT) are investigated. For this installation, the optimal approach is determined to be applying a constant fraction discrimination (CFD) on the upstream readout. The position resolution is found to be similar for the tested SiPM and PMT. This work has resulted in the development of a user interface to aid operations by visualising the beam losses and their positions in real time. Full article
Show Figures

Figure 1

12 pages, 4843 KiB  
Article
Development of TR-19 Cyclotron Parameter Settings for Fully Automated Production of Radiometals with Applications in Nuclear Medicine
by Liviu Ștefan Crăciun, Tiberiu Relu Eșanu, Radu Leonte, Hermann Anton Schubert, Raul Victor Erhan and Dana Niculae
Instruments 2025, 9(1), 3; https://doi.org/10.3390/instruments9010003 - 26 Feb 2025
Viewed by 413
Abstract
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a [...] Read more.
At the Radiopharmaceutical Research Center (CCR) of the Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), we operate a TR-19 cyclotron for radio isotope production. To broaden our spectrum of radioisotopes with applications in nuclear medicine, we add a new external beam line towards a state-of-the-art solid target station. Besides practical experience with the implementation of the Comecer ALCEO metal solid targetry system, a new, more efficient way of tuning the beam onto the target and the design of a dedicated neutron local layered shielding are presented. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1408 KiB  
Article
Feasibility Study of a PET Detector with a Wavelength-Shifting Fiber Readout
by Anzori Sh. Georgadze
Instruments 2025, 9(1), 2; https://doi.org/10.3390/instruments9010002 - 5 Feb 2025
Viewed by 868
Abstract
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries [...] Read more.
We designed and evaluated the performance of a high-resolution large-area detector for positron emission tomography (PET) based on a crystal assembly readout using wavelength-shifting (WLS) fibers, offering a cost-effective alternative to the direct readout of monolithic crystals with photodetectors. The considered detector geometries were made up of 4 × 4 assemblies of LuY2SiO5:Ce (LYSO) crystal scintillators, each with surface area of 50 × 50 mm2 and thickness of 7 or 15 mm, which were optically coupled together using optical adhesive. The crystal assembly was coupled with square cross-sections of orthogonal wavelength-shifting (WLS) fibers placed on the top and bottom of the assembly. To evaluate the characteristics of the novel detector, we used GEANT4 to perform optical photon transport in the crystal assembly and WLS fibers. The simulation results show that best position resolution achieved was 1.6 ± 0.4 mm full width at half maximum (FWHM) and 4.2 ± 0.6 mm full width at tenth maximum (FWTM) for the crystal thickness of 7 mm and 1.7 ± 0.4 mm FWHM and 6.0 ± 0.6 mm FWTM for the crystal thickness of 15 mm. Compared with a direct photosensor readout, WLS fibers can drastically reduce the number of photosensors required while covering a larger sensitive detection area. In the proposed detector design, 2N photodetectors are used to cover the same image area instead of N2 with a direct readout. This design allows for the development of a compact detector with an expanded effective field of view and reduced cost. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

11 pages, 1292 KiB  
Article
Design and Simulation of a Muon Detector Using Wavelength-Shifting Fiber Readouts for Border Security
by Anzori Sh. Georgadze
Instruments 2025, 9(1), 1; https://doi.org/10.3390/instruments9010001 - 27 Jan 2025
Viewed by 1099
Abstract
Cosmic ray muon tomography is a promising method for the non-invasive inspection of shipping containers and trucks. It leverages the highly penetrating cosmic muons and their interactions with various materials to generate three-dimensional images of large and dense objects, such as inter-modal shipping [...] Read more.
Cosmic ray muon tomography is a promising method for the non-invasive inspection of shipping containers and trucks. It leverages the highly penetrating cosmic muons and their interactions with various materials to generate three-dimensional images of large and dense objects, such as inter-modal shipping containers, which are typically opaque to conventional X-ray radiography techniques. One of the key tasks of customs and border security is verifying shipping container declarations to prevent illegal trafficking, and muon tomography offers a viable solution for this purpose. Common imaging methods using muons rely on data analysis of either muon scattering or absorption–transmission. We design a compact muon tomography system with dimensions of 3 × 3 × 3 m3, consisting of 2D position-sensitive detectors. These detectors include plastic scintillators, wavelength-shifting (WLS) fibers, and SiPMs. Through light transport modeling with GEANT4, we demonstrate that the proposed detector design—featuring 1 m × 1 m scintillator plates with 2 mm2 square-shaped WLS fibers—can achieve a spatial resolution of approximately 0.7–1.0 mm. Through Monte Carlo simulations, we demonstrate that combining muon scattering and absorption data enables the rapid and accurate identification of cargo materials. In a smuggling scenario where tobacco is falsely declared as paper towel rolls, this combined analysis distinguishes the two with 3 σ confidence at a spatial resolution of 1 mm (FWHM) for the muon detector, achieving results within a scanning time of 40 s for a 20-foot shipping container. Full article
Show Figures

Figure 1

14 pages, 3682 KiB  
Project Report
Portable Arbitrary Pulse Generator for Driving Microcoils for Micromagnetic Neurostimulation
by Robert P. Bloom, Renata Saha, Zachary Sanger, Walter C. Low, Theoden I. Netoff and Jian-Ping Wang
Instruments 2024, 8(4), 55; https://doi.org/10.3390/instruments8040055 - 16 Dec 2024
Viewed by 934
Abstract
Micromagnetic stimulation (μMS) is a promising branch of neurostimulation but without some of the drawbacks of electrical stimulation. Microcoil (μcoil)-based magnetic stimulation uses small micrometer-sized coils that generate a time-varying magnetic field, which, as per Faraday’s Laws of Electromagnetic Induction, induces an electric [...] Read more.
Micromagnetic stimulation (μMS) is a promising branch of neurostimulation but without some of the drawbacks of electrical stimulation. Microcoil (μcoil)-based magnetic stimulation uses small micrometer-sized coils that generate a time-varying magnetic field, which, as per Faraday’s Laws of Electromagnetic Induction, induces an electric field on a conductive surface. This method of stimulation has the advantage of not requiring electrical contact with the tissue; however, these μcoils are not easy to operate. Large currents are required to generate the required magnetic field. These large currents are too large for standard test equipment to provide, and additional power amplifiers are needed. To aid in the testing and development of micromagnetic stimulation devices, we have created a compact single-unit test setup for driving these devices called the µCoil Driver. This unit is designed to drive small inductive loads up to ±8 V at 5 A and 10 kHz. Full article
Show Figures

Figure 1

11 pages, 3737 KiB  
Article
A 3D Printed Air-Tight Cell Adaptable for Far-Infrared Reflectance, Optical Photothermal Infrared Spectroscopy, and Raman Spectroscopy Measurements
by Annalisa Paolone, Arcangelo Celeste, Maria Di Pea, Sergio Brutti, Ferenc Borondics and Francesco Capitani
Instruments 2024, 8(4), 54; https://doi.org/10.3390/instruments8040054 - 16 Dec 2024
Viewed by 916
Abstract
Material characterization and investigation are the basis for improving the performance of electrochemical devices. However, many compounds with electrochemical applications are sensitive to atmospheric gases and moisture; therefore, even their characterization should be performed in a controlled atmosphere. In some cases, it is [...] Read more.
Material characterization and investigation are the basis for improving the performance of electrochemical devices. However, many compounds with electrochemical applications are sensitive to atmospheric gases and moisture; therefore, even their characterization should be performed in a controlled atmosphere. In some cases, it is impossible to execute such investigations in a glove box, and, therefore, in the present work, an air-tight 3D printed cell was developed that preserves samples in a controlled atmosphere while allowing spectroscopic measurements in reflectance geometry. Equipped with a cheap 1 mm thick CaF2 optical window or a more expensive 0.5 mm thick ZnS window, the cell was used for both optical photothermal infrared and Raman spectroscopy measures; imaging of the samples was also possible. The far-infrared range reflectance measurements were performed with a cell equipped with a diamond window. Full article
Show Figures

Figure 1

15 pages, 7434 KiB  
Article
A New Approach to Enhancing Radiation Hardness in Advanced Nuclear Radiation Detectors Subjected to Fast Neutrons
by Aref Vakili, Mahsa Farasat, Antonino La Magna, Markus Italia and Lucio Pancheri
Instruments 2024, 8(4), 53; https://doi.org/10.3390/instruments8040053 - 12 Dec 2024
Viewed by 865
Abstract
Low-Gain Avalanche Diodes (LGADs) are critical sensors for the ATLAS and CMS timing detectors at the High Luminosity Large Hadron Collider (HL-LHC), offering enhanced timing resolution with gain factors of 20 to 50. However, their radiation tolerance is hindered by the Acceptor Removal [...] Read more.
Low-Gain Avalanche Diodes (LGADs) are critical sensors for the ATLAS and CMS timing detectors at the High Luminosity Large Hadron Collider (HL-LHC), offering enhanced timing resolution with gain factors of 20 to 50. However, their radiation tolerance is hindered by the Acceptor Removal Phenomenon (ARP), which deactivates boron in the gain layer, reducing gain below the threshold for accurate timing. This study investigates the radiation hardness of thin, carbon-doped LGAD sensors developed by Brookhaven National Laboratory (BNL) to address ARP-induced limitations. Active dopant profiles in the gain layer, junction, and bulk were measured using a Spreading Resistance Probe (SRP) profilometer, and the effects of annealing and neutron irradiation at fluences of 3 × 1014, 1 × 1015, and 3 × 1015 neq/cm2 (1 MeV equivalent) were analyzed. Low carbon dose rates showed minimal improvement due to enhanced deactivation, while higher doses improved radiation hardness, demonstrating a non-linear dose–response relationship. These findings highlight the potential of optimizing gain layers with high carbon doses and low-diffusion boron to extend LGAD lifetimes in high-radiation environments. Future research will refine carbon implantation strategies and explore alternative approaches to further enhance the radiation hardness of LGADs. Full article
Show Figures

Figure 1

17 pages, 80966 KiB  
Article
An Open-Frame Loading Stage for High-Resolution X-Ray CT
by David Plappert, Michael Schütz, Georg C. Ganzenmüller, Frank Fischer, Mario Campos, Simon Procz, Michael Fiederle and Stefan Hiermaier
Instruments 2024, 8(4), 52; https://doi.org/10.3390/instruments8040052 - 3 Dec 2024
Viewed by 1064
Abstract
The utilisation of high-resolution in situ computed tomography (CT) in the (sub-)μm range is typically only viable in synchrotron facilities, as the deployment of a conventional loading stage in laboratory CTs with a cone beam source does not facilitate a corresponding geometric magnification. [...] Read more.
The utilisation of high-resolution in situ computed tomography (CT) in the (sub-)μm range is typically only viable in synchrotron facilities, as the deployment of a conventional loading stage in laboratory CTs with a cone beam source does not facilitate a corresponding geometric magnification. This publication presents a CT system with a novel in situ concept that allows spatial resolutions down to 0.5 μm, enabling the analysis of weakly absorbing materials capable of applying loads of up to 5 kN in both the compression and tension directions to the sample during the measurement. The necessity for a highly precise mechanical design to ensure successful measurements at magnifications approaching the theoretical limit makes the system’s development particularly demanding. The components employed are presented, along with the requisite considerations and methodologies. It can be demonstrated that the intended specifications with regard to precision and quality are met. The experimental results of a fibre-reinforced polymer demonstrate the system’s ability to detect matrix damage features below a single fibre diameter, thereby highlighting its potential for applications in materials science where traditional laboratory CTs are insufficient and synchrotron access is limited. Full article
Show Figures

Figure 1

14 pages, 3443 KiB  
Article
Acoustic Communication Among Smart Sensors: A Feasibility Study
by Paolo Caruso, Helbert da Rocha, Antonio Espírito-Santo, Vincenzo Paciello and José Salvado
Instruments 2024, 8(4), 51; https://doi.org/10.3390/instruments8040051 - 22 Nov 2024
Viewed by 786
Abstract
Smart sensors and networks have spread worldwide over the past few decades. In the industry field, these concepts have found an increasing quantity of applications. The omnipresence of smart sensor networks and smart devices, especially in the industrial world, has contributed to the [...] Read more.
Smart sensors and networks have spread worldwide over the past few decades. In the industry field, these concepts have found an increasing quantity of applications. The omnipresence of smart sensor networks and smart devices, especially in the industrial world, has contributed to the emergence of the concept of Industry 4.0. In a world where everything is interconnected, communication among smart devices is critical to technological development in the field of smart industry. To improve communication, many engineers and researchers implemented methods to standardize communication along the various levels of the ISO-OSI model, from hardware design to the implementation and standardization of different communication protocols. The objective of this paper is to study and implement an unconventional type of communication, exploiting acoustic wave propagation on metallic structures, starting from the state of the art, and highlighting the advantages and disadvantages found in existing literature, trying to overcome them and describing the progress beyond the state of the art. The proposed application for acoustic communication targets the field of smart industries, where implementing signal transmission via wireless or wired methods is challenging due to interference from the widespread presence of metallic structures. This study explores an innovative approach to acoustic communication, with a particular focus on the physical challenges related to acoustic wave propagation. Additionally, communication performance is examined in terms of noise rejection, analyzing the impact of injected acoustic noise on communication efficiency. Full article
Show Figures

Figure 1

22 pages, 1988 KiB  
Article
Assessing the Performance of Deep Learning Predictions for Dynamic Aperture of a Hadron Circular Particle Accelerator
by Davide Di Croce, Massimo Giovannozzi, Carlo Emilio Montanari, Tatiana Pieloni, Stefano Redaelli and Frederik F. Van der Veken
Instruments 2024, 8(4), 50; https://doi.org/10.3390/instruments8040050 - 19 Nov 2024
Viewed by 1057
Abstract
Understanding the concept of dynamic aperture provides essential insights into nonlinear beam dynamics, beam losses, and the beam lifetime in circular particle accelerators. This comprehension is crucial for the functioning of modern hadron synchrotrons like the CERN Large Hadron Collider and the planning [...] Read more.
Understanding the concept of dynamic aperture provides essential insights into nonlinear beam dynamics, beam losses, and the beam lifetime in circular particle accelerators. This comprehension is crucial for the functioning of modern hadron synchrotrons like the CERN Large Hadron Collider and the planning of future ones such as the Future Circular Collider. The dynamic aperture defines the extent of the region in phase space where the trajectories of charged particles are bounded over numerous revolutions, the actual number being defined by the physical application. Traditional methods for calculating the dynamic aperture depend on computationally demanding numerical simulations, which require tracking over multiple turns of numerous initial conditions appropriately distributed in phase space. Prior research has shown the efficiency of a multilayer perceptron network in forecasting the dynamic aperture of the CERN Large Hadron Collider ring, achieving a remarkable speed-up of up to 200-fold compared to standard numerical tracking tools. Building on recent advancements, we conducted a comparative study of various deep learning networks based on BERT, DenseNet, ResNet and VGG architectures. The results demonstrate substantial enhancements in the prediction of the dynamic aperture, marking a significant advancement in the development of more precise and efficient surrogate models of beam dynamics. Full article
Show Figures

Figure 1

37 pages, 2139 KiB  
Article
A Review of the Multiple-Readout Concept and Its Application in an Integrally Active Calorimeter
by Corrado Gatto, Vito Di Benedetto and Anna Mazzacane
Instruments 2024, 8(4), 49; https://doi.org/10.3390/instruments8040049 - 14 Nov 2024
Viewed by 843
Abstract
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or  [...] Read more.
A comprehensive multi-jet physics program is anticipated for experiments at future colliders. Key physics processes necessitate detectors that can distinguish signals from W and Z bosons and the Higgs boson. Typical examples include channels with W+W or ZoZo pairs and processes involving new physics in those cases where neutral particles must be disentangled from charged ones due to the presence of W or Z bosons in their final states. Such a physics program demands calorimetric energy resolution at or beyond the limits of traditional calorimetric techniques. Multiple-readout calorimetry, which aims to reduce fluctuations in energy measurements of hadronic showers, is a promising approach. The first part of this article reviews dual- and triple-readout calorimetry within a mathematical framework describing the underlying compensating mechanism. The second part proposes a potential implementation using an integrally active and total absorption detector. This model serves as the basis for several Monte Carlo studies, illustrating how the response of a multiple-readout calorimeter depends on construction parameters. Among the layouts considered, one configuration operating in triple-readout mode shows the potential to achieve an energy resolution approaching 20%/E. Full article
Show Figures

Figure 1

10 pages, 5685 KiB  
Article
Improvement and Characterisation of the ArCLight Large-Area Dielectric Light Detector for Liquid-Argon Time Projection Chambers
by Jonas Bürgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa and Michele Weber
Instruments 2024, 8(4), 48; https://doi.org/10.3390/instruments8040048 - 4 Nov 2024
Viewed by 1183
Abstract
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for [...] Read more.
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for modular detectors that wish to maximize their active volume. The ArgonCube light readout system detectors (ArCLights) are large-area thin-wavelength-shifting (WLS) panels that can operate in highly proximate modular detectors and within the electric field. The WLS plastic forming the bulk structure of the ArCLight has Tetraphenyl Butadiene (TPB) and sheets of dichroic mirror layered across its surface. It is coupled to a set of six silicon photomultipliers (SiPMs). This publication compares TPB coating techniques for large surface areas and describes quality control methods for large-scale production. Full article
Show Figures

Figure 1

Back to TopTop