Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Journal = Biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2992 KiB  
Article
Extraction, Isolation, and TEMPO-NaBr-NaClO Oxidation Modification of Cellulose from Coffee Grounds
by Mourad Ouhammou, Abdellah Mourak, Aziz Ait-Karra, Jaouad Abderrahim, Najat Elhadiri and Mostafa Mahrouz
Biomass 2025, 5(2), 22; https://doi.org/10.3390/biomass5020022 - 3 Apr 2025
Viewed by 64
Abstract
This study investigates the extraction, isolation, and chemical modification of cellulose from coffee ground residues using TEMPO-NaBr-NaClO oxidation. These residues represent a promising renewable source of cellulose, which is obtained after the removal of impurities such as lignin (24%), hemicellulose (42%), and other [...] Read more.
This study investigates the extraction, isolation, and chemical modification of cellulose from coffee ground residues using TEMPO-NaBr-NaClO oxidation. These residues represent a promising renewable source of cellulose, which is obtained after the removal of impurities such as lignin (24%), hemicellulose (42%), and other compounds. The TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-catalyzed oxidation selectively converts primary hydroxyl groups into carboxylate groups (-COOH) under mild conditions in aqueous media, achieving an oxidation yield of up to 67%. Structural and morphological analyses, including scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD), confirm the successful chemical modification of the cellulose. The results indicate a reduction in crystallinity index from native cellulose (80%) to oxidized cellulose (65%), reflecting partial disruption of the microfibril structure and the introduction of new chemical functionalities. FTIR analysis reveals the appearance of characteristic carboxylate bands, confirming the conversion of hydroxyl groups into carboxyl groups. Energy-dispersive X-ray (EDX) analysis further highlights a significant increase in oxygen content, indicating the efficiency of the oxidation process. The TEMPO-oxidized cellulose is water-soluble, enabling the production of valuable polyelectrolytes and intermediates. These chemical modifications improve the cellulose’s reactivity, broadening its potential applications in various fields, including biocomposites, sustainable packaging materials, and functional films. This work demonstrates the feasibility of utilizing coffee ground residues as a renewable, eco-friendly source of modified cellulose for high-value applications. Full article
Show Figures

Figure 1

12 pages, 699 KiB  
Communication
Potentials of Sustainable Aviation Fuel Production from Biomass and Waste: How Australia’s Sugar Industry Can Become a Successful Global Example
by Marcel Dossow, Vahid Shadravan, Weiss Naim, Sebastian Fendt, David Harris and Hartmut Spliethoff
Biomass 2025, 5(2), 21; https://doi.org/10.3390/biomass5020021 - 2 Apr 2025
Viewed by 61
Abstract
This study assesses Queensland’s sugar industry potential for sustainable aviation fuel (SAF) production via biomass-to-liquids (BtL) processes. Using surplus sugarcane bagasse, preliminary estimates suggest that individual mills could support 60–130 MWth gasifiers, while clustered approaches enable larger capacities. Annual BtL syncrude production [...] Read more.
This study assesses Queensland’s sugar industry potential for sustainable aviation fuel (SAF) production via biomass-to-liquids (BtL) processes. Using surplus sugarcane bagasse, preliminary estimates suggest that individual mills could support 60–130 MWth gasifiers, while clustered approaches enable larger capacities. Annual BtL syncrude production could reach 440 mL, increasing to ~1000 mL with additional feedstocks. These findings highlight both the industrial-scale viability of SAF production and the logistical and engineering challenges that must be addressed to align with Australia’s renewable energy and fuel security goals. Full article
Show Figures

Figure 1

17 pages, 1773 KiB  
Article
Stochastic Models Applied to the Forecasting and Management of Residual Woody Forest Biomass: Approaches, Challenges, and Practical Applications
by Leonel J. R. Nunes
Biomass 2025, 5(2), 20; https://doi.org/10.3390/biomass5020020 - 1 Apr 2025
Viewed by 50
Abstract
Stochastic models can be used for predicting the availability of residual woody forest biomass, considering the variability and uncertainty associated with climatic, operational, and economic factors. These models, such as ARIMA, GARCH, state transition models, and Monte Carlo simulations, are widely used to [...] Read more.
Stochastic models can be used for predicting the availability of residual woody forest biomass, considering the variability and uncertainty associated with climatic, operational, and economic factors. These models, such as ARIMA, GARCH, state transition models, and Monte Carlo simulations, are widely used to capture seasonal patterns, dynamic variations, and complex uncertainties. Their application supports critical decisions in forest and energy operations planning. The implementation of the models was carried out in Python, using specialized packages such as Statsmodels for ARIMA, Arch for GARCH, and PyMC3 for state transition models. Probabilistic calculations were performed with Numpy and Scipy, while Matplotlib and Seaborn were used for data visualization. Hypothetical data simulating real-world scenarios were analyzed, divided into training and testing sets, with cross-validation and metrics such as RMSE, MAPE, and R2. ARIMA demonstrated high accuracy in capturing seasonality, while GARCH effectively modeled volatility. Monte Carlo simulations provided the most reliable forecasts, capturing uncertainties across multiple scenarios. The models excelled in predicting periods of high biomass availability with robust projections. The results confirm the efficacy of stochastic models in predicting residual biomass, with a positive impact on sustainable planning. However, challenges such as data dependency and computational resources still need to be addressed, pointing to directions for future research and methodological improvements. Full article
Show Figures

Figure 1

20 pages, 1010 KiB  
Article
Impact of the Integration Level in Crop–Livestock Systems on Biomass Production, Nutrient Recycling, and Energy Efficiency
by Arnulfo Domínguez-Hernández, Alejandra Juárez-Velázquez, Elisa Domínguez-Hernández, Rosalba Zepeda-Bautista, Claudia Hernández-Aguilar and Martha Domínguez-Hernández
Biomass 2025, 5(2), 19; https://doi.org/10.3390/biomass5020019 - 25 Mar 2025
Viewed by 121
Abstract
Sustainable agricultural practices are essential to address global food security challenges while minimizing environmental impacts. This study aimed to evaluate integrated farming systems with varying levels of integration (from lower to higher)—maize monoculture + livestock (MM), maize + cover crop + mixed prairie [...] Read more.
Sustainable agricultural practices are essential to address global food security challenges while minimizing environmental impacts. This study aimed to evaluate integrated farming systems with varying levels of integration (from lower to higher)—maize monoculture + livestock (MM), maize + cover crop + mixed prairie + livestock (MCP), and maize + red clover + mixed prairie + livestock (MRP)—to assess their contributions to circularity and sustainability. The research examined biomass and protein production, nutrient cycling, energy use, food needs covered, and workload over two cropping cycles. The findings revealed that highly integrated systems (MRP and MCP) significantly enhance biomass production, energy efficiency, and nutrient recycling compared to the MM system (p < 0.05). MRP produced 4 times more biomass than MM (9.4 t ha−1), while MCP achieved a 0.99 Nitrogen Recycling Index compared with 0.38 in MM, underscoring the benefits of grazing and increasing agrobiodiversity. Integrated systems also improved soil health (+17.4% organic matter in MRP and MCP, +91.5% nitrogen in MCP), reduced dependency on synthetic inputs, and boosted protein production (animal-derived protein in MRP and MCP = 395.4 kg, MM = 73.7 kg), thus meeting food needs for large populations. However, they required increased labor and technical expertise, presenting adoption barriers for smallholders. The synergy between agroecological practices and circularity offers a pathway to sustainable intensification, fostering economic, environmental, and social resilience. In this way, the results highlighted the potential of integrated farming systems to transform agricultural systems. Full article
Show Figures

Figure 1

18 pages, 1040 KiB  
Article
Quantitative and Qualitative Characterization of Food Waste for Circular Economy Strategies in the Restaurant Sector of Riobamba, Ecuador: A Case Study Approach
by Angélica Saeteros-Hernández, Francisco Chalen-Moreano, Ronald Zurita-Gallegos, Pedro Badillo-Arévalo, Mayra Granizo-Villacres, Carlos Cevallos-Hermida and Diego Viteri-Nuñez
Biomass 2025, 5(2), 18; https://doi.org/10.3390/biomass5020018 - 25 Mar 2025
Viewed by 157
Abstract
The aim of this study is the quantitative and qualitative characterization of food waste from the restaurant sector in Riobamba, Ecuador as part of circular economy efforts. A weekly analysis of waste generation data collected from 13 participating restaurants showed that the average [...] Read more.
The aim of this study is the quantitative and qualitative characterization of food waste from the restaurant sector in Riobamba, Ecuador as part of circular economy efforts. A weekly analysis of waste generation data collected from 13 participating restaurants showed that the average daily food waste generated was 18.48 kg/restaurant/day. The highest percentage (55%) was produced by organic waste, which was primarily composed of waste from vegetables. Plastics represented most of the recyclable waste (21%), and 24% of the waste was disposable. With a low dry matter content of 24.33 ± 5.12% and an average moisture level of 75.68 ± 5.12%, the high organic content indicates its potential for value-adding through biological recycling processes like anaerobic digestion and composting. Fruit and vegetable waste had high moisture levels (80.3 ± 2.54% and 81.2 ± 2.75%, respectively), which made them perfect for composting and biogas production. However, the moisture and dry matter contents differed greatly amongst the waste categories. The increased dry matter concentration of animal protein waste (54.5 ± 4.30%) indicated that it may be converted into products with added value, such as animal meal and oils. Plant protein waste needs to be processed quickly to avoid spoiling because of its extraordinarily high moisture content (95.7 ± 3.20%) and low dry matter (4.3 ± 3.20%). The findings underscore the necessity for focused measures, such as composting, anaerobic digestion, and enhanced recycling, to optimize resource recovery and mitigate environmental consequences. Full article
Show Figures

Figure 1

25 pages, 2848 KiB  
Review
Pineapple Waste Biorefinery: An Integrated System for Production of Biogas and Marketable Products in South Africa
by Reckson Kamusoko and Patrick Mukumba
Biomass 2025, 5(2), 17; https://doi.org/10.3390/biomass5020017 - 25 Mar 2025
Viewed by 205
Abstract
Pineapple (Ananas comosus) is one of the most economically important fruit cultivars in South Africa. The fruit is locally consumed, processed into various industrial products or exported to foreign markets. Approximately 115,106 metric tons of pineapple fruit are harvested in South [...] Read more.
Pineapple (Ananas comosus) is one of the most economically important fruit cultivars in South Africa. The fruit is locally consumed, processed into various industrial products or exported to foreign markets. Approximately 115,106 metric tons of pineapple fruit are harvested in South Africa. The pineapple value chain generates significant amounts of waste, in the form of pomace, peel, crown, stem, core and base. If not properly treated, pineapple waste (PAW) could have a profound detrimental impact on the environment. This calls for advanced technological platforms to transform PAW into useful bio-based products. A biorefinery is a potent strategy to convert PAW into multiple food and non-food products while effectively disposing of the waste. The objective of this review is to explore possible pathways for the valorization of PAW into energy and material products in a biorefinery. The paper looks at 10 products including biogas, biohythane, bioethanol, biobutanol, biohydrogen, pyrolytic products, single-cell proteins, animal feed, vermicompost and bioactive compounds. Several platforms (i.e., biochemical, chemical, physical and thermochemical) are available to convert PAW into valuable goods. Amongst them, the biochemical route appears to be the most favorable option for the valorization of PAW. Anaerobic digestion and fermentation are well-established biochemical technologies for PAW valorization. These methods are simple, low-cost, eco-friendly and sustainable. The focal point of emerging research is the enhanced efficacy of biorefinery platforms. The commercialization of PAW biorefining is a potential gamechanger that could revitalize the entire South African economy. Full article
Show Figures

Figure 1

28 pages, 1689 KiB  
Review
High Impact Biomass Valorization for Second Generation Biorefineries in India: Recent Developments and Future Strategies for Sustainable Circular Economy
by Ayisha Naziba Thaha, Mehrdad Ghamari, Gitanjali Jothiprakash, Sasireka Velusamy, Subburamu Karthikeyan, Desikan Ramesh and Senthilarasu Sundaram
Biomass 2025, 5(1), 16; https://doi.org/10.3390/biomass5010016 - 18 Mar 2025
Viewed by 575
Abstract
India’s rapidly growing automobile industry has intensified the need for sustainable fuel alternatives to reduce dependency on imported fossil fuels and mitigate greenhouse gas (GHG) emissions. This study examines the potential of second-generation biorefineries as a comprehensive solution for efficient biomass valorization in [...] Read more.
India’s rapidly growing automobile industry has intensified the need for sustainable fuel alternatives to reduce dependency on imported fossil fuels and mitigate greenhouse gas (GHG) emissions. This study examines the potential of second-generation biorefineries as a comprehensive solution for efficient biomass valorization in India. With a projected bioethanol demand of 10,160 million liters by 2025 for India’s 20% ethanol blending target, there is an urgent need to develop sustainable production pathways. The biorefinery approach enables simultaneous production of multiple valuable products, including bioethanol, biochemicals, and bioproducts, from the same feedstock, thereby enhancing economic viability through additional revenue streams while minimizing waste. This paper systematically analyzes available biomass resources across India, evaluates integrated conversion technologies (biochemical, thermochemical, and synergistic approaches), and examines current policy frameworks supporting biorefinery implementation. Our findings reveal that second-generation biorefineries can significantly contribute to reducing GHG emissions by up to 2.7% of gross domestic product (GDP) by 2030 while creating rural employment opportunities and strengthening energy security. However, challenges in supply chain logistics, technological optimization, and policy harmonization continue to hinder large-scale commercialization. The paper concludes by proposing strategic interventions to overcome these barriers and accelerate the transition toward a sustainable circular bioeconomy in India. Full article
Show Figures

Figure 1

19 pages, 2268 KiB  
Article
Environmental Assessment of Tannin Extraction from Bark Residues for Application in Water Treatment
by Carla L. Simões, Alice B. P. Santos Neto, Ana C. Rodrigues, Ricardo Ferreira and Ricardo Simoes
Biomass 2025, 5(1), 15; https://doi.org/10.3390/biomass5010015 - 6 Mar 2025
Viewed by 441
Abstract
This study explores the extraction and utilization of tannins from Acacia sp. bark residues for water treatment applications. As a by-product of forest management, Acacia sp. bark is valorized through tannin-based coagulant production, contributing to the circular (bio)economy. A systematic review with bibliometric [...] Read more.
This study explores the extraction and utilization of tannins from Acacia sp. bark residues for water treatment applications. As a by-product of forest management, Acacia sp. bark is valorized through tannin-based coagulant production, contributing to the circular (bio)economy. A systematic review with bibliometric analysis was first conducted to assess the technical–scientific landscape, identifying methodologies and technologies applied to extract and produce natural tannin-based coagulants from Acacia sp. bark residues for water treatment. From the portfolio of analyzed publications, and which followed the thematic axis addressed and the inclusion criteria, only a single study focuses on performing a life cycle assessment (LCA). Due to the relevance of the topic and the clear lack of existing literature, an environmental assessment of the extraction and production of condensed tannins was performed using the LCA methodology from a gate-to-gate perspective. Among the six process stages, spray drying and adsorption (purification) were the primary sources of environmental impact due to their high energy consumption and makeup ethanol use, respectively. The most effective strategy to enhance environmental performance would be reducing water consumption in extraction, thereby lowering energy demand in spray drying. Since both extraction and spray drying require significant energy, decreasing water use and allowing higher moisture content in the condensed tannin extract would mitigate energy consumption. The LCA study thus proved essential in guiding process development toward a reduced environmental footprint. Full article
Show Figures

Figure 1

30 pages, 1847 KiB  
Article
Prospects for Biomass Heat Energy in Kosovo: Environmental Considerations and Usage Limitations
by Ardit Sertolli, Attila Bai, Albiona Pestisha and Péter Balogh
Biomass 2025, 5(1), 14; https://doi.org/10.3390/biomass5010014 - 2 Mar 2025
Viewed by 431
Abstract
The energy crisis has highlighted the need for a significant change in Kosovo’s lignite-based electrical energy system, particularly greater investments in renewable energy sources. These sources would provide greater price stability, centralized accessibility, and relatively affordable investment costs. This research tries to analyze [...] Read more.
The energy crisis has highlighted the need for a significant change in Kosovo’s lignite-based electrical energy system, particularly greater investments in renewable energy sources. These sources would provide greater price stability, centralized accessibility, and relatively affordable investment costs. This research tries to analyze the basic attitudes behind the behavior of the students from the agricultural faculty in Kosovo in order to acquire a better understanding of their preferences for renewable energy source purchases, using the Best–Worst Scaling (BWS) method and cluster analysis. Students’ perspectives on renewable energy show strong environmental and price conscientiousness in BWS methods (first and second rank), while the rate of eco-skeptic students reaches only 23% in the cluster analysis, which is a very promising sign of the younger generation’s growing dedication to sustainability. Students, as future decision-makers, can play a critical role in making the transition to a more sustainable and resilient agricultural system. Green transition in Kosovo can be reached by combining the importance of dissemination and marketing tools with the pressing demand for renewable energy solutions, which might be interesting not only for Kosovo, but (considering the expectable enlargement) also for the EU. Full article
Show Figures

Figure 1

17 pages, 5531 KiB  
Review
Clean and Efficient Thermochemical Conversion Technologies for Biomass in Green Methanol Production
by Niannian Liu, Zhihong Liu, Yu Wang, Tuo Zhou, Man Zhang and Hairui Yang
Biomass 2025, 5(1), 13; https://doi.org/10.3390/biomass5010013 - 1 Mar 2025
Viewed by 534
Abstract
China has abundant biomass and renewable energy resources suitable for producing green methanol via biomass thermochemical conversion. Given China’s increasing demand for sustainable fuel alternatives and the urgency to reduce carbon emissions, optimizing biomass utilization through gasification is critical. Research has highlighted the [...] Read more.
China has abundant biomass and renewable energy resources suitable for producing green methanol via biomass thermochemical conversion. Given China’s increasing demand for sustainable fuel alternatives and the urgency to reduce carbon emissions, optimizing biomass utilization through gasification is critical. Research has highlighted the potential of integrating biomass gasification with water electrolysis to enhance efficiency in green methanol production, leveraging China’s vast biomass reserves to establish a cleaner energy pathway. Four main biomass gasification technologies—fixed-bed, fluidized-bed, pressurized fluidized-bed, and entrained-flow—have been investigated. Fixed-bed and bubbling fluidized-bed gasification face low gas yield and scaling issues; whereas, circulating fluidized-bed gasification (CFB) offers better gas yield, carbon efficiency, and scalability, though it exhibits high tar and methane in syngas. Pressurized fluidized-bed gasification improves gasification intensity, reaction rate, and equipment footprint, yet stable feedstock delivery under pressure remains challenging. Entrained-flow gasification achieves high carbon conversion and low tar but requires finely crushed biomass, restricted by biomass’ low combustion temperature and fibrous nature. Current industrially promising routes include oxygen-enriched and steam-based CFB gasification with tar cracking, which reduces tar but requires significant energy and investment; oxygen-enriched combustion to produce CO2 for methanol synthesis, though oxygen in flue gas can poison catalysts; and a new high oxygen equivalence ratio CFB gasification technology proposed here, which lowers tar formation and effectively removes oxygen from syngas, thereby enabling efficient green methanol production. Overcoming feedstock challenges, optimizing operating conditions, and controlling tar and catalyst poisoning remain key hurdles for large-scale commercialization. Full article
Show Figures

Figure 1

19 pages, 9865 KiB  
Article
Morphologic Features and Thermal Characteristics of Nine Cotton Biomass Byproducts
by Zhongqi He, Sunghyun Nam, Haile Tewolde, Catrina V. Ford, Renuka Dhandapani, Roselle Barretto and Donghai Wang
Biomass 2025, 5(1), 12; https://doi.org/10.3390/biomass5010012 - 25 Feb 2025
Viewed by 329
Abstract
Cotton biomass residues consist of an important portion of the agricultural byproducts. In this work, we systematically analyzed and compared the morphology and thermal properties of nine cotton biomass byproducts. The unique tubular and/or porous morphology of some samples (e.g., main stems, branch [...] Read more.
Cotton biomass residues consist of an important portion of the agricultural byproducts. In this work, we systematically analyzed and compared the morphology and thermal properties of nine cotton biomass byproducts. The unique tubular and/or porous morphology of some samples (e.g., main stems, branch stems, and petioles) implied their structural advantage in the development of electric supercapacitors and pollutant absorbents. The higher heating values of the nine samples ranged between 17 and 20 MJ kg−1, higher than some of the other common agricultural byproducts (e.g., rice husk and sugarcane bagasse). The moisture content showed a positive correlation (p > 0.05) to the dehydration temperature of the differential scanning calorimetric plots. The residual char after thermogravimetric analysis could be separated into a high-yield cluster (34.4–26.6%) of leaf blades, bracts/peduncles, burrs, defatted meal, and petioles, and a low-yield cluster (20.5–13.6%) of main stems, branch stems, cotton gin waste, and cottonseed hull. These observations and data are useful for a better understanding of the fundamental chemistry of cotton biomass byproducts. Growing knowledge is useful for improving their recycling strategies and may shed light on the exploration of new value-added products or applications from these cotton biomass byproducts for a circular economy with sustainable agriculture. Full article
Show Figures

Figure 1

23 pages, 3433 KiB  
Review
A Review of the Sustainability, Chemical Composition, Bioactive Compounds, Antioxidant and Antidiabetic Activity, Neuroprotective Properties, and Health Benefits of Microalgae
by Maria Dimopoulou, Alexandros Kolonas, Dimitris Stagos and Olga Gortzi
Biomass 2025, 5(1), 11; https://doi.org/10.3390/biomass5010011 - 24 Feb 2025
Viewed by 1013
Abstract
Microalgae have emerged as a valuable source of essential nutrients and bioactive compounds, such as proteins, polyphenols, and polysaccharides, which are critical for overall health. Recent research has demonstrated the therapeutic potential of microalgae in addressing a variety of health conditions, including inflammation, [...] Read more.
Microalgae have emerged as a valuable source of essential nutrients and bioactive compounds, such as proteins, polyphenols, and polysaccharides, which are critical for overall health. Recent research has demonstrated the therapeutic potential of microalgae in addressing a variety of health conditions, including inflammation, oxidative stress, Type 2 diabetes mellitus (T2DM), and neurological disorders. The aim of this paper is to investigate the chemical composition, nutritional value, and biological properties of microalgae. Relevant information was gathered through a comprehensive search of scientific databases, including PubMed, Science Direct, Google Scholar, and the Cochrane Library. Key microalgal strains such as Spirulina platensis, Chlorella vulgaris, Haematococcus pluvialis, and Dunaliella salina have shown notable health-promoting properties. For instance, Spirulina platensis is rich in proteins, vitamins, and polyunsaturated fatty acids, while Chlorella vulgaris offers significant levels of chlorophyll and carotenoids. Haematococcus pluvialis is recognized for its high astaxanthin content and Dunaliella salina for its beta-carotene content. These microalgae strains have demonstrated beneficial effects in managing type 2 diabetes mellitus, alleviating oxidative stress, and offering neuroprotective potential. This paper provides an overview of microalgae’s nutritional composition, their medicinal properties, and their promising role in treating chronic diseases, with a particular focus on their applications in antidiabetic and neuroprotective therapies. Full article
Show Figures

Figure 1

19 pages, 2601 KiB  
Article
Techno-Economic Analysis of Biogas Production with Vinasse and Co-Digestion with Vinasse and Filter Cake for Annexed Plants: Case Study in Paraná State, Brazil
by Sílvio M. P. Marcucci, Emerson D. N. Dos Santos, Maria E. K. Fuziki, Giane G. Lenzi, Jose M. Balthazar and Angelo M. Tusset
Biomass 2025, 5(1), 10; https://doi.org/10.3390/biomass5010010 - 20 Feb 2025
Viewed by 387
Abstract
Decentralized energy generation by renewable fuels is an alternative to energy dependency and reduction in greenhouse gas emissions, with biogas emerging as a promising option. Brazil, as the second largest ethanol producer, generates several by-products in the production of this biofuel that could [...] Read more.
Decentralized energy generation by renewable fuels is an alternative to energy dependency and reduction in greenhouse gas emissions, with biogas emerging as a promising option. Brazil, as the second largest ethanol producer, generates several by-products in the production of this biofuel that could be used for biogas production. In this study, the potential for biogas production and electricity generation from biogas was evaluated. Furthermore, an economic analysis was conducted with calculations of discounted net present value (NPV), internal rate of return (IRR), return on investment (ROI), Levelized Cost of Electricity (LCOE), and sensitivity analysis related to the implementation of vinasse anaerobic digestion, and vinasse and filter cake co-digestion in seven sugarcane mills in Paraná state, Brazil. The results demonstrated that co-digestion and higher sugarcane milling capacities benefit biogas generation and economic aspects. Additionally, implementing anaerobic digestion for electricity production was viable in all scenarios, indicating that biogas from the sugarcane sector could be a viable alternative for decentralized energy generation. Full article
Show Figures

Figure 1

37 pages, 2130 KiB  
Review
Reaction Mechanism and Kinetics of Hydrothermal Liquefaction at Sub- and Supercritical Conditions: A Review
by Fiaz Ahmad, Tharaka Rama Krishna C. Doddapaneni, Saqib Sohail Toor and Timo Kikas
Biomass 2025, 5(1), 9; https://doi.org/10.3390/biomass5010009 - 7 Feb 2025
Viewed by 1326
Abstract
Hydrothermal liquefaction (HTL) technology has garnered immense research interest due to its potential to convert wet biomass into petroleum-like biocrude. Understanding the reaction mechanism and kinetics of HTL is crucial for understanding the process better, estimating the yields, and scaling up. On the [...] Read more.
Hydrothermal liquefaction (HTL) technology has garnered immense research interest due to its potential to convert wet biomass into petroleum-like biocrude. Understanding the reaction mechanism and kinetics of HTL is crucial for understanding the process better, estimating the yields, and scaling up. On the other hand, reaction mechanisms and kinetics largely depend upon the feedstock composition and reaction parameters of HTL. However, the literature lacks an in-depth analysis of the reaction mechanism and kinetics concerning biocrude yield and product distribution for a single to multi-feedstock scenario. This review focuses on the reaction mechanisms of various biomolecular components of lignocellulosic biomass, proteins, and lipids in the HTL process under sub- and supercritical conditions. Furthermore, the HTL reaction kinetics, effect of reaction conditions on reaction mechanisms, and product distribution are explored. The findings agree that reaction temperature and retention time follow inverse relations for high biocrude yield. A high heating rate is recommended for higher biocrude yield to avoid cracking and recombination processes. A high solvent/feedstock ratio, depending on feedstock composition, was favored for optimum biocrude yield. In addition, catalysts and reaction solvents, especially organic solvents, effectively contribute towards high biocrude yield, even up to 70%. Heterogeneous catalysts are favored due to reusability and improved biocrude quality. Also, hydrothermal co-liquefaction (multi-feedstock) use for improving biocrude yield was debated. A detailed discussion on the reaction kinetics of various biomolecular components in the HTL process revealed that reactions in HTL normally follow the first-order rate law. Finally, the authors outline the pointers for future research in HTL for industrial upscaling. Full article
Show Figures

Figure 1

20 pages, 1233 KiB  
Review
Chemical Production Based on Biomass—Potential and Limits
by Manfred Kircher
Biomass 2025, 5(1), 8; https://doi.org/10.3390/biomass5010008 - 5 Feb 2025
Viewed by 723
Abstract
As the raw material transition from fossil to renewable feedstock progresses, the demand for biogenic raw materials for industrial purposes will increase. This applies above all to the energy and chemical sectors. However, the capacities for biogenic energy and carbon sources to be [...] Read more.
As the raw material transition from fossil to renewable feedstock progresses, the demand for biogenic raw materials for industrial purposes will increase. This applies above all to the energy and chemical sectors. However, the capacities for biogenic energy and carbon sources to be provided by agriculture and forestry are limited. This review examines the contribution that biogenic raw materials and CO2 from biogenic sources can make to sustainable chemical production in the EU. It analyses statistical data from the EU and studies from the chemical industry. First priority needs to be given to edible biomass for the sector of nutrition. When it comes to the industrial use of biomass, sectors should be prioritised that cannot do without carbon-supplying raw materials. This is particularly the case in the field of organic chemistry. This review focuses on bio-based organic chemical products and gives an outlook on the future of chemical production in Europe based on primary, secondary, and tertiary biomass and CO2 from biogenic sources. Finally, two new indicators for economically and ecologically sustainable industrial use of biomass are proposed. Both indicators can support the determination of the sustainability status of the sustainable integration of agriculture, forestry, residual, and biowaste management in bioeconomic value networks. Full article
Show Figures

Figure 1

Back to TopTop