Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,144)

Search Parameters:
Journal = Infrastructures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4917 KiB  
Article
Adaptive Analysis of Freeway Off-Ramps Incorporating Heterogeneous Traffic Flows
by Zixuan Zhang, Zhenxing Niu, Yichen Liu and Yan Li
Infrastructures 2025, 10(4), 88; https://doi.org/10.3390/infrastructures10040088 (registering DOI) - 6 Apr 2025
Abstract
Highway exit ramps play a crucial role in ensuring the safe and efficient operation of road networks. As automated vehicles progressively integrate into highways, it is essential to investigate whether these exit ramps can accommodate the safe and efficient operation of heterogeneous traffic [...] Read more.
Highway exit ramps play a crucial role in ensuring the safe and efficient operation of road networks. As automated vehicles progressively integrate into highways, it is essential to investigate whether these exit ramps can accommodate the safe and efficient operation of heterogeneous traffic flows. This study constructed a basic simulation test using the SUMO simulation platform to analyze the adaptability of motorway exit ramps in a heterogeneous traffic environment. The simulation model incorporated the Krauss car-following model for the longitudinal dynamics of manual-driving vehicles, the ACC/CACC car-following model for automated vehicles, the LC2013 lane-changing model for manual-driving vehicles, and the game-theoretic lane-changing model for automated vehicles. The results reveal that in the absence of automated vehicles, the comprehensive cost is minimized with a deceleration lane length of 215 m, offering superior adaptability compared to the current standard of 180 m. As the proportion of automated vehicles gradually increases to surpass 40%, the rate of improvement in traffic flow, operational speed, and overall operational costs diminishes. Under these conditions, heterogeneous traffic flows exhibit limited adaptability to the existing road infrastructure. However, when the deceleration lane is extended to 200 m, the exit ramp shows optimal adaptability for heterogeneous traffic flows. Full article
Show Figures

Figure 1

18 pages, 5199 KiB  
Article
Impact of Concrete Sealer and Salt Usage on Concrete Bridge Deck Condition and Life Cycle Cost
by Wei Huang, Hao Wang and Danny Xiao
Infrastructures 2025, 10(4), 87; https://doi.org/10.3390/infrastructures10040087 (registering DOI) - 6 Apr 2025
Abstract
The objective of this study is to analyze bridge deck condition deterioration and evaluate the impact of concrete sealer and salt usage on deck condition and life-cycle cost. To achieve this goal, machine learning models were built to predict the evolution of bridge [...] Read more.
The objective of this study is to analyze bridge deck condition deterioration and evaluate the impact of concrete sealer and salt usage on deck condition and life-cycle cost. To achieve this goal, machine learning models were built to predict the evolution of bridge deck rating. The deck maintenance history shows that the average bridge age at deck overlay and deck replacement is around 25 and 50 years, respectively. Deck overlay can improve deck condition from an average rating of 6.3 to 7.1, and deck replacement can efficiently recover deck condition from an average rating of 5.3 to 8.5. The effect of concrete sealer on bridge deck condition is only observable at the stage before the first overlay, indicating that concrete sealer may not be effective over the long term. More usages of prewet salt and salt brine in anti-icing result in slightly higher deck condition ratings, while more dry salt in deicing presents slightly lower deck condition ratings, indicating the benefits of salt brine over dry salt. When concrete sealer is applied every 2 or 4 years, it can help extend the service life of the bridge deck by around 1~2 years. If concrete sealer is applied every 12 years, a 6% reduction in life cycle cost could be achieved. Full article
Show Figures

Figure 1

21 pages, 6826 KiB  
Article
A Mixed FEM for Studying Jointed Concrete Pavement Blowups
by Daniele Baraldi
Infrastructures 2025, 10(4), 86; https://doi.org/10.3390/infrastructures10040086 - 4 Apr 2025
Viewed by 52
Abstract
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended [...] Read more.
This work aims to study the compressive buckling and consequent blowup of jointed concrete pavements due to thermal rise. For this purpose, a simple and effective mixed FEM, originally introduced for performing static and buckling analyses of beams on elastic supports, is extended for performing a preliminary study of jointed concrete pavements. An elastic Euler–Bernoulli beam in frictionless and bilateral contact with an elastic support is considered. Three different elastic support models are assumed, namely a Winkler support, an elastic half-space (3D), and half-plane (2D). The transversal pavement joint or crack is modeled employing a hinge at the beam midpoint with nil rotational stiffness. Numerical tests are performed by determining critical loads and the corresponding modal shapes, with particular attention to the first minimum critical load related to pavement blowup. From a theoretical point of view, the results show that minimum critical loads converge to existing results in the case of Winkler support, whereas new results are obtained in the case of the 2D and 3D support types. Associated modal shapes have maximum upward displacements at the beam midpoint. The second and subsequent critical loads, together with the corresponding sinusoidal modal shapes, converge to existing results. From a practical point of view, minimum critical loads represent a lower bound for estimating axial forces due to thermal variation causing jointed pavement blowup. Full article
Show Figures

Figure 1

21 pages, 7725 KiB  
Article
Trip Generation Models for Transportation Impact Analyses of Shopping Centers in Croatia
by Deana Breški, Biljana Maljković and Mihaela Senjak
Infrastructures 2025, 10(4), 85; https://doi.org/10.3390/infrastructures10040085 - 4 Apr 2025
Viewed by 67
Abstract
For effective transportation planning, land use, travel behavior, and infrastructure capacity should be optimized to support sustainable urban growth and reduce congestion. Every new site development generates traffic volume, which can affect the quality of traffic flow in the surrounding road network. Therefore, [...] Read more.
For effective transportation planning, land use, travel behavior, and infrastructure capacity should be optimized to support sustainable urban growth and reduce congestion. Every new site development generates traffic volume, which can affect the quality of traffic flow in the surrounding road network. Therefore, trip generation, which predicts future travel demand, is a crucial step in the traditional four-step transportation model. In this context, the main objective of this study is to develop a model for estimating vehicle trip generation due to the construction of a shopping center, which is a significant traffic generator. The survey was conducted in Split (Croatia) at five existing locations, and linear regression analysis was used to develop models for different time periods. The results indicated that vehicle trips are strongly correlated with the gross floor area of shopping centers, with a high coefficient of determination. Additionally, this study presents a comparison of measured traffic volumes with estimates using ITE Trip Generation Manual equations. The findings suggest that these vehicle trip estimates should be reduced by approximately 40%. Since no previous studies have been conducted on the impact of land use on trip generation in the Republic of Croatia, the developed models represent a first step in creating a database that should be expanded with new data. Estimating the traffic generated by a new site development is a crucial component of traffic management, as it helps planners and engineers assess its impact on the surrounding road network and implement necessary measures to ensure efficient and safe traffic flow. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

32 pages, 2651 KiB  
Review
Effects of Crumb Rubber-Modified Asphalt as a Pavement Layer in Railways: A Scoping Review
by Milad Kazemian, Ebrahim Hadizadeh Raeisi, Ahmad Davari Ghezelhesar, Amir Hajimirzajan and Szabolcs Fischer
Infrastructures 2025, 10(4), 84; https://doi.org/10.3390/infrastructures10040084 - 3 Apr 2025
Viewed by 55
Abstract
Railway track performance and durability face growing challenges from higher speeds, heavier axle loads, and changing environmental conditions. Crumb rubber-modified asphalt (CRMA) offers a sustainable solution by repurposing waste tires into a durable material for railway trackbeds, improving both performance and environmental impact. [...] Read more.
Railway track performance and durability face growing challenges from higher speeds, heavier axle loads, and changing environmental conditions. Crumb rubber-modified asphalt (CRMA) offers a sustainable solution by repurposing waste tires into a durable material for railway trackbeds, improving both performance and environmental impact. Following PRISMA-ScR guidelines, this scoping review synthesizes an extensive body of global research on the structural, mechanical, and environmental benefits of CRMA in railway trackbeds. A systematic literature search was conducted across major academic databases, covering studies published over several decades. Selection criteria focused on CRMA applications in railway trackbeds, using keywords such as “crumb rubber-modified asphalt”, “railway track vibration”, and “sustainable railway materials.” After rigorous screening and eligibility assessment, the most relevant peer-reviewed studies were included, emphasizing mechanical performance, durability, and environmental impact. Key findings indicate that CRMA effectively reduces ground vibrations, enhances load distribution, and lowers long-term maintenance costs while promoting sustainable waste management through tire recycling. However, challenges such as optimal mix design, potential emissions, and long-term bonding stability require further investigation. Additionally, the review was limited to English-language studies, potentially omitting relevant non-English research, and some reports were inaccessible during retrieval. This review maps critical research gaps, identifies key areas for future optimization, and highlights CRMA’s potential to advance resilient and eco-friendly railway infrastructure. Full article
Show Figures

Figure 1

21 pages, 5472 KiB  
Article
Mitigating Settlement and Enhancing Bearing Capacity of Adjacent Strip Footings Using Sheet Pile Walls: An Experimental Approach
by Ali M. Basha, Ahmed Yousry Akal and Mohamed H. Zakaria
Infrastructures 2025, 10(4), 83; https://doi.org/10.3390/infrastructures10040083 - 2 Apr 2025
Viewed by 53
Abstract
In construction, closely spaced footings cause stress interactions that impact bearing capacity, settlement, and stability. This study experimentally evaluates the role of sheet pile walls (SPWs) in improving the performance of two adjacent strip footings—an existing footing and a newly placed footing—on sandy [...] Read more.
In construction, closely spaced footings cause stress interactions that impact bearing capacity, settlement, and stability. This study experimentally evaluates the role of sheet pile walls (SPWs) in improving the performance of two adjacent strip footings—an existing footing and a newly placed footing—on sandy soil. The influence of SPW penetration depth (Ls) and center-to-center spacing between footings (X) on settlement and bearing resistance under vertical loads was investigated. Experiments were conducted in a large-scale soil tank (330 × 30 cm, depth 210 cm), with X ranging from 300 mm to 1000 mm and SPW lengths varying from 0 mm to 1500 mm. The results show that SPWs significantly enhance foundation performance by reducing settlement and increasing bearing capacity. When Ls/B = 6, the settlement of the new footing (F1) decreases by 48%, while the existing footing (F2) sees reductions of 47%, 67%, and 77% at Ls/B = 3, 4, and 5, respectively, under 500 kN/m2 stress. The bearing capacity of F1 increases by 53% when X = 300 mm, demonstrating strong interference effects. Conversely, the F2 settlement increases as X decreases, with a 96% rise at X = 300 mm, but it stabilizes at Ls/B = 5. SPWs also shift failure from general shear to punching shear, modifying soil–structure interaction. These findings highlight the effectiveness of SPWs in mitigating settlement, enhancing load-bearing capacity, and optimizing foundation design in closely spaced footing systems. The results suggest that an SPW length-to-footing width ratio (Ls/B) between 4 and 5 is optimal for minimizing settlement and improving stability, with only a slight difference in effectiveness between these two ratios. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

17 pages, 3783 KiB  
Article
A Multi-Scale CNN-BiLSTM Framework with An Attention Mechanism for Interpretable Structural Damage Detection
by Shengping Wu and Jingliang Liu
Infrastructures 2025, 10(4), 82; https://doi.org/10.3390/infrastructures10040082 - 2 Apr 2025
Viewed by 50
Abstract
Structural damage detection is essential for civil infrastructure safety. The challenges in noise sensitivity, multi-scale feature extraction, and handling bidirectional temporal dependencies are often encountered by traditional methods such as vibration analysis and computer vision. Although potential solutions are offered by recent deep-learning [...] Read more.
Structural damage detection is essential for civil infrastructure safety. The challenges in noise sensitivity, multi-scale feature extraction, and handling bidirectional temporal dependencies are often encountered by traditional methods such as vibration analysis and computer vision. Although potential solutions are offered by recent deep-learning advancements, limitations are frequently imposed by low interpretability and the incapability to adaptively prioritize crucial features within complex time-series data. To address these, a novel hybrid deep-learning framework is proposed. It is integrated with multi-scale convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and attention mechanisms. Localized time-frequency features are captured from vibration signals by the CNN using multi-scale kernels. Bidirectional temporal dependencies are skillfully captured by the BiLSTM. The interpretability is improved by the attention mechanism through dynamic feature weighting. Experiments on a simulated steel frame demonstrate that detection accuracy and robustness can be enhanced by this framework. This work promotes structural health monitoring, providing a practical tool for engineering applications. Full article
Show Figures

Figure 1

22 pages, 7837 KiB  
Article
Improved Yield Line Analysis and Innovative Methodology to Evaluate the Capacity of RC Barriers Subjected to Vehicular Collision Force
by Fahed H. Salahat, Hayder A. Rasheed, Christopher A. Jones and Isaac Klugh
Infrastructures 2025, 10(4), 81; https://doi.org/10.3390/infrastructures10040081 - 31 Mar 2025
Viewed by 88
Abstract
Reinforced Concrete (RC) barriers are used for different purposes in the highway inventory. An important purpose is the use of concrete barriers to act as railing that protects bridge piers against vehicular collision force (VCF). Therefore, these barriers are designed to absorb the [...] Read more.
Reinforced Concrete (RC) barriers are used for different purposes in the highway inventory. An important purpose is the use of concrete barriers to act as railing that protects bridge piers against vehicular collision force (VCF). Therefore, these barriers are designed to absorb the collision energy and/or redirect the vehicle away from the parts being protected. Accurate estimation of the capacity of RC barriers during crash events is an important consideration in their design and placement. The American Association of State Highway and Transportation Officials (AASHTO) considers yield line analysis (YLA) with the V-shape failure pattern to predict the barrier capacity. AASHTO’s analysis method involves some assumptions that are intended to simplify the analysis process. Some of these assumptions have been shown to underestimate the actual barrier capacity and might disqualify many existing RC barriers from acting as intervening structures due to structural inadequacy. Many researchers have proposed alternative failure patterns and methodologies in an attempt to better predict the capacity of RC barriers. This research shows that AASHTO’s YLA, with the current V-shape failure pattern, can be improved and still predict the barrier capacity when some of the simplifying assumptions are eliminated. Also, the research presents an alternative innovative truss analogy model to predict the capacity of RC barriers. The results of the improved YLA and the proposed truss model are validated by finite element analysis (FEA) using Abaqus. The results of this research will help structural engineers in the highway industry to initially design new barriers for the intended capacity as well as estimate the capacity of existing ones. Full article
Show Figures

Figure 1

22 pages, 6875 KiB  
Article
Evaluation of Flange Grease on Revenue Service Tracks Using Laser-Based Systems and Machine Learning
by Aditya Rahalkar, S. Morteza Mirzaei, Yang Chen, Carvel Holton and Mehdi Ahmadian
Infrastructures 2025, 10(4), 80; https://doi.org/10.3390/infrastructures10040080 - 31 Mar 2025
Viewed by 65
Abstract
This study presents a machine learning approach for estimating the presence and extent of flange-face lubrication on a rail. It offers an alternative to the current empirical and subjective methods for lubrication assessment, in which track engineers’ periodic visual inspections are used to [...] Read more.
This study presents a machine learning approach for estimating the presence and extent of flange-face lubrication on a rail. It offers an alternative to the current empirical and subjective methods for lubrication assessment, in which track engineers’ periodic visual inspections are used to evaluate the condition of the rail. This alternative approach uses a laser-based optical sensing system developed by the Railway Technologies Laboratory (RTL) located at Virginia Tech in Blacksburg, VA, combined with a machine learning calibration model. The optical sensing system can capture the fluorescence emitted by the grease to identify its presence, while the machine learning model classifies the extent of grease present into four thickness indices (TIs), from 0 to 3, representing heavy (3), medium (2), light (1) and low/no (0) lubrication. Both laboratory and field tests are conducted, with the results demonstrating the ability of the system to differentiate lubrication levels and measure the presence or absence of grease and TI with an accuracy of 90%. Full article
Show Figures

Figure 1

22 pages, 2758 KiB  
Article
Pedestrian Perceptions of Sidewalk Paving Attributes: Insights from a Pilot Study in Braga
by Fernando Fonseca, Alexandra Rodrigues and Hugo Silva
Infrastructures 2025, 10(4), 79; https://doi.org/10.3390/infrastructures10040079 - 30 Mar 2025
Viewed by 51
Abstract
The influence of sidewalk paving materials on pedestrian safety and comfort remains an underexplored topic within the walkability literature. This pilot study aims to address this gap by evaluating the role of five surface-related attributes—roughness, friction, texture, heat retention, and maintenance—through a qualitative [...] Read more.
The influence of sidewalk paving materials on pedestrian safety and comfort remains an underexplored topic within the walkability literature. This pilot study aims to address this gap by evaluating the role of five surface-related attributes—roughness, friction, texture, heat retention, and maintenance—through a qualitative approach complemented by a simplified quantitative evaluation. The study was conducted along a pedestrian route in Braga, Portugal, where pedestrian perceptions were collected via a questionnaire and compared with objective measurements obtained at seven testing points with different paving materials. The results indicate a strong preference for concrete and mortar pavements due to their slip-resistant surfaces, smoothness, and overall regularity. Quantitative tests confirmed that these materials exhibited the highest slip resistance and surface regularity, reinforcing the general alignment between pedestrian perceptions and measured performance. Participants rated paving attributes higher than others, such as sidewalk width or obstacle-free paths. Notable demographic differences also emerged: women rated sidewalk attributes more highly than men, seniors preferred traditional stone pavements more, and adults favored concrete. These findings highlight the importance of integrating surface-related sidewalk attributes into walkability assessments and urban design strategies to promote safer, more comfortable, and more inclusive pedestrian environments. Full article
Show Figures

Figure 1

22 pages, 2572 KiB  
Article
Rice Husk Ash and Waste Marble Powder as Alternative Materials for Cement
by Mezgebu Debas Yeshiwas, Mitiku Damtie Yehualaw, Betelhem Tilahun Habtegebreal, Wallelign Mulugeta Nebiyu and Woubishet Zewdu Taffese
Infrastructures 2025, 10(4), 78; https://doi.org/10.3390/infrastructures10040078 - 29 Mar 2025
Viewed by 83
Abstract
Concrete, a cornerstone of modern construction, owes its widespread adoption to global industrialization and urbanization, with mortar being an essential component. However, the cement production process is energy-intensive and generates significant CO2 emissions. This study explores the use of agricultural (rice husk [...] Read more.
Concrete, a cornerstone of modern construction, owes its widespread adoption to global industrialization and urbanization, with mortar being an essential component. However, the cement production process is energy-intensive and generates significant CO2 emissions. This study explores the use of agricultural (rice husk ash, RHA) and industrial (waste marble powder, WMP) waste materials as partial cement replacements in mortar. Despite extensive research on RHA and WMP individually, studies examining their combined effects remain scarce. This research assessed cement replacement levels from 0% to 30% in 5% increments, evaluating the fresh, mechanical, durability, and microstructural properties of the mortar. The findings showed that replacing 20% of cement with RHA and WMP increased compressive strength by 20.65% after 28 days, attributed to improved homogeneity and pozzolanic reactions that produced more calcium silicate hydrate. Water absorption decreased from 8.3% to 6.34%, indicating lower porosity and enhanced uniformity. Microstructural analyzes showed a denser mortar with 13% less mass loss at 20% replacement level. However, higher replacement levels reduced workability due to the increased surface area of RHA and WMP. Generally, using RHA and WMP as partial replacements of up to 20% significantly enhances mortar properties and supports sustainability. Full article
Show Figures

Figure 1

23 pages, 1347 KiB  
Article
Enhancing Walkability for Older Adults: The Role of Government Policies and Urban Design
by Akshatha Rao, Rama Devi Nandineni, Roshan S. Shetty, Kailas Mallaiah and Giridhar B. Kamath
Infrastructures 2025, 10(4), 77; https://doi.org/10.3390/infrastructures10040077 - 28 Mar 2025
Viewed by 198
Abstract
This research examines the impact of government policy initiatives, community engagement programs, and age-friendly urban design policies on the built environment, with a specific focus on the walkability of older adults. The walkability of older adults in the built environment is essential because [...] Read more.
This research examines the impact of government policy initiatives, community engagement programs, and age-friendly urban design policies on the built environment, with a specific focus on the walkability of older adults. The walkability of older adults in the built environment is essential because it promotes physical activity, social connectedness, and independence, thereby enhancing the overall quality of life and supporting healthy aging. This study employs a quantitative approach and cross-sectional design with convenience sampling in Udupi district, one of the urbanizing districts in India. The sample includes 333 older adults from diverse sociodemographic backgrounds who actively use the built environment. Structural equation modeling was used to test the hypotheses. The findings indicate that community engagement programs are the strongest enabler of safety and security perceptions related to walkability. Safety and security positively correlate with increased physical activity level, increased socialization level, and improved quality of life in older adults. Security also mediates the relationship between community engagement programs and all three outcomes associated with walkability. It highlights priority urban design features such as strategic lighting, sheltered walkways, traffic calming measures, barrier-free access, rest areas, and inclusive design elements as critical components of adaptive urban spaces that promote safety, accessibility, and social inclusion for older adults. Full article
Show Figures

Figure 1

27 pages, 8596 KiB  
Article
Eco-Friendly High-Strength Geopolymer Mortar from Construction and Demolition Wastes
by Osama Youssf, Donia Safaa Eldin and Ahmed M. Tahwia
Infrastructures 2025, 10(4), 76; https://doi.org/10.3390/infrastructures10040076 - 27 Mar 2025
Viewed by 198
Abstract
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the [...] Read more.
Geopolymer mortar is an eco-friendly type of mortar that is mainly made of fly ash, slag, and sand as common precursors. Recently, the availability of these materials has become limited due to the huge increase in geopolymer constructions. This is aligned with the recent demand for recycling construction and demolition waste (CDW). In this study, brick waste (BW), ceramic tile waste (CTW), roof tile waste (RTW), and glass waste (GW) extracted from CDW were prepared in the following two sizes: one equivalent to the traditional geopolymer mortar binder (fly ash and slag) size and the other one equivalent to the sand size. The prepared CDW was used to partially replace the binder or sand to produce high-strength geopolymer mortar (HSGM). The replacements were carried out at rates of 25% and 50% by volume. The variety of mechanical and durability characteristics were measured, including workability, compressive strength, freezing/thawing resistance, sulfate attack, water sorptivity, and water absorption. Three curing conditions were applied for the proposed HSGM in this study, namely, water, heat followed by water, and heat followed by air. The results showed that the compressive strength of all HSGM mixes containing CDW ranged from 24 to 104 MPa. HSGM mixes cured in heat followed by water showed the highest 28-day compressive strengths of 104 MPa (when using 25% BW binder), 84.5 MPa (when using 25% BW fine aggregate), 91.3 MPa (when using 50% BW fine aggregate), 84 MPa (when using 25% CTW binder), and 94 MPa (when using 25% CTW fine aggregate). The findings demonstrated that using BW provided good resistance to freezing/thawing and sulfate attack. The water absorption of HSGM increased by 57.8% when using 50% CTW fine aggregate and decreased by 26.5% when using 50% GW fine aggregate. The highest water sorptivity of HSGM was recorded when 50% CTW fine aggregate was used. The use of CDW in HSGM helps reduce the depletion of natural resources and minimizes waste accumulation, enhancing environmental sustainability. These benefits make HSGM an eco-friendly alternative that promotes circular economy practices. Full article
Show Figures

Figure 1

25 pages, 11379 KiB  
Article
Dynamic Behaviour and Seismic Response of Scoured Bridge Piers
by Christos Antonopoulos, Enrico Tubaldi, Sandro Carbonari, Fabrizio Gara and Francesca Dezi
Infrastructures 2025, 10(4), 75; https://doi.org/10.3390/infrastructures10040075 - 25 Mar 2025
Viewed by 143
Abstract
This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations’ stability and on the dynamic stiffness of soil–foundation systems makes bridges more susceptible to earthquake [...] Read more.
This study explores the transverse response of bridge piers in riverbeds under a multi-hazard scenario, involving seismic actions and scoured foundations. The combined impact of scour on foundations’ stability and on the dynamic stiffness of soil–foundation systems makes bridges more susceptible to earthquake damage. While previous research has extensively investigated this issue for bridges founded on piles, this work addresses the less explored but critical scenario of bridges on shallow foundations, typical of existing bridges. A comprehensive soil–foundation structure model is developed to be representative of the transverse response of multi-span and continuous girder bridges, and the effects of different scour scenarios and foundation embedment on the dynamic stiffness of the soil–foundation sub-systems are investigated through refined finite element models. Then, a parametric investigation is conducted to assess the effects of scour on the dynamic properties of the systems and, for some representative bridge prototypes, the seismic response at scoured and non-scoured conditions are compared considering real earthquakes. The research results demonstrate the significance of scour effects on the dynamic properties of the soil–foundation structure system and on the displacement demand of the bridge decks. Full article
(This article belongs to the Special Issue Bridge Modeling, Monitoring, Management and Beyond)
Show Figures

Figure 1

20 pages, 10657 KiB  
Article
The Integrity of Short-Span Bridges in the Case of Coastal Floods: Monitoring Strategies and an Example
by Mario Lucio Puppio, Alessandro Pucci and Mauro Sassu
Infrastructures 2025, 10(4), 74; https://doi.org/10.3390/infrastructures10040074 - 24 Mar 2025
Viewed by 178
Abstract
This paper examines short-span bridge (SSB) integrity against floods. They represent the majority of road infrastructures and are often affected by hydraulic erosion and overlap during rainfalls. A method to classify and identify a set of SSBs in an assigned territory is illustrated. [...] Read more.
This paper examines short-span bridge (SSB) integrity against floods. They represent the majority of road infrastructures and are often affected by hydraulic erosion and overlap during rainfalls. A method to classify and identify a set of SSBs in an assigned territory is illustrated. An analytical approach to evaluate the severity condition and priority of intervention is then presented, furnishing formulas for designing SSBs or evaluating the safety of existing ones. An emblematic case study, located on Sardinia Island (Italy), is described, applying the proposed approach in terms of hydraulic and structural loads to be considered. Finally, a discussion of the main obtained results is carried out, taking into account experiences due to recent floods and related collapses, with conclusions presented. Full article
Show Figures

Figure 1

Back to TopTop