Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,657)

Search Parameters:
Journal = Membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6225 KiB  
Article
RF Sputtering of Gold Nanoparticles in Liquid and Direct Transfer to Nafion Membrane for PEM Water Electrolysis
by Chandrakanth Reddy Chandraiahgari, Gloria Gottardi, Giorgio Speranza, Beatrice Muzzi, Domenico Dalessandro, Andrea Pedrielli, Victor Micheli, Ruben Bartali, Nadhira Bensaada Laidani and Matteo Testi
Membranes 2025, 15(4), 115; https://doi.org/10.3390/membranes15040115 (registering DOI) - 7 Apr 2025
Abstract
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency [...] Read more.
Sputtering onto liquids is rapidly gaining attention for the green and controlled dry synthesis of ultrapure catalysts nanomaterials. In this study, we present a clean and single-step method for the synthesis of gold nanoparticles directly in polyethylene glycol (PEG) liquid using radio frequency (RF) magnetron sputtering and by subsequently transferring them to Nafion ionomer, fabricating a catalyst-coated membrane (CCM), an essential component of the proton exchange membrane water electrolyzer (PEMWE). The samples were systematically characterized at different stages of process development. The innovative transfer process resulted in a monodispersed homogeneous distribution of catalyst particles inside CCM while retaining their nascent nanoscale topography. The chemical analysis confirmed the complete removal of the trapped PEG through the process optimization. The electrochemical catalytic activity of the optimized CCM was verified, and the hydrogen evolution reaction (HER) in acidic media appeared outstanding, a vital step in water electrolysis toward H2 production. Therefore, this first study highlights the advantages of RF sputtering in liquid for nanoparticle synthesis and its direct application in preparing CCM, paving the way for the development of innovative membrane preparation techniques for water electrolysis. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

11 pages, 5466 KiB  
Article
Electrocatalytic PANI-Encapsulated Aluminum Silicate/Ceramic Membranes for Efficient and Energy-Saving Removal of 4-Chlorophenol in Wastewater
by Shuo Wang, Tianhao Huang, Haoran Ma, Zihan Liu, Houbing Xia, Zhiqiang Sun, Jun Ma and Ying Zhao
Membranes 2025, 15(4), 114; https://doi.org/10.3390/membranes15040114 (registering DOI) - 7 Apr 2025
Abstract
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as [...] Read more.
The removal of chlorinated organic pollutants from wastewater is a critical environmental challenge, as traditional methods for treating toxic pollutants like phenol and chlorophenols often suffer from high energy consumption and long treatment times, limiting their practical use. Electrocatalytic filtration has emerged as a promising alternative, but efficient, energy-saving electrocatalytic membranes for pollutants like 4-chlorophenol (4-CP) are still underexplored. A new type of electrocatalytic coupling membrane catalyst, ASP/CM (PANI-encapsulated aluminum silicate/ceramic membrane), was prepared using inexpensive silicate and polyaniline as the base materials, with in situ polymerization combined with co-focus magnetron sputtering. Under optimal conditions (25 mA/cm2, 10 mM Na2SO4, 1.0 mL·min−1 flow rate, and 50 μM 4-CP concentration), the membrane achieved about 95.1% removal of 4-CP and the degradation rate after five cycles was higher than 85%. In addition, O2•− and •OH are important active species in the electrocatalytic degradation of 4-CP. The 4-CP electrocatalytic membrane filtration process is a dual process of cathode reduction dechlorination and anodic oxidation. This work offers new insights into developing next-generation electrocatalytic membranes and expands the practical applications of electrocatalytic filtration systems. Full article
(This article belongs to the Special Issue Membrane Catalytic Oxidation in Water Treatment)
Show Figures

Figure 1

19 pages, 2820 KiB  
Article
Process Simulation of High-Pressure Nanofiltration (HPNF) for Membrane Brine Concentration (MBC): A Pilot-Scale Case Study
by Abdallatif Satti Abdalrhman, Sangho Lee, Seungwon Ihm, Eslam S. B. Alwaznani, Christopher M. Fellows and Sheng Li
Membranes 2025, 15(4), 113; https://doi.org/10.3390/membranes15040113 - 4 Apr 2025
Viewed by 84
Abstract
The growing demand for sustainable water management solutions has prompted the development of membrane brine concentration (MBC) technologies, particularly in the context of desalination and minimum liquid discharge (MLD) applications. This study presents a simple model of high-pressure nanofiltration (HPNF) for MBC. The [...] Read more.
The growing demand for sustainable water management solutions has prompted the development of membrane brine concentration (MBC) technologies, particularly in the context of desalination and minimum liquid discharge (MLD) applications. This study presents a simple model of high-pressure nanofiltration (HPNF) for MBC. The model integrates reverse osmosis (RO) transport equations with mass balance equations, thereby enabling acceptable predictions of water flux and total dissolved solids (TDS) concentration. Considering the limitations of the pilot plant data, the model showed reasonable accuracy in predicting flux and TDS, with R2 values above 0.99. The simulation results demonstrated that an increase in feed flow rate improves flux but raises specific energy consumption (SEC) and reduces recovery. In contrast, an increase in feed pressure results in an increased recovery and brine concentration. Increasing feed TDS decreases flux, recovery, and final brine TDS and increases SEC. Response surface methodology (RSM) was employed to optimize process performance across multiple criteria, optimizing flux, SEC, recovery, and final brine concentration. The optimal feed flow rate and pressure vary depending on the criteria in the improvement scenarios, underscoring the importance of systematic process improvement. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

37 pages, 1386 KiB  
Review
Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions
by Seyedeh Laleh Dashtban Kenari, Saviz Mortazavi, Sanaz Mosadeghsedghi, Charbel Atallah and Konstantin Volchek
Membranes 2025, 15(4), 112; https://doi.org/10.3390/membranes15040112 - 3 Apr 2025
Viewed by 46
Abstract
Mining discharge, namely acid mine drainage (AMD), is a significant environmental issue due to mining activities and site-specific factors. These pose challenges in choosing and executing suitable treatment procedures that are both sustainable and effective. Ceramic membranes, with their durability, long lifespan, and [...] Read more.
Mining discharge, namely acid mine drainage (AMD), is a significant environmental issue due to mining activities and site-specific factors. These pose challenges in choosing and executing suitable treatment procedures that are both sustainable and effective. Ceramic membranes, with their durability, long lifespan, and ease of maintenance, are increasingly used in industrial wastewater treatment due to their superior features. This review provides an overview of current remediation techniques for mining effluents, focusing on the use of ceramic membrane technology. It examines pressure-driven ceramic membrane systems like microfiltration, ultrafiltration, and nanofiltration, as well as the potential of vacuum membrane distillation for mine drainage treatment. Research on ceramic membranes in the mining sector is limited due to challenges such as complex effluent composition, low membrane packing density, and poor ion separation efficiency. To assess their effectiveness, this review also considers studies conducted on simulated water. Future research should focus on enhancing capital costs, developing more effective membrane configurations, modifying membrane outer layers, evaluating the long-term stability of the membrane performance, and exploring water recycling during mineral processing. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
16 pages, 4857 KiB  
Article
Integration of Specific Aeration Demand (SAD) into Flux-Step Test for Submerged Membrane Bioreactor
by Albert Galizia, Joaquim Comas, Ignasi Rodríguez-Roda, Gaëtan Blandin and Hèctor Monclús
Membranes 2025, 15(4), 111; https://doi.org/10.3390/membranes15040111 - 3 Apr 2025
Viewed by 106
Abstract
This study proposes a novel methodology to assess fouling that complements the flux-step test (FST) by integrating aeration-step tests (ASTs) to optimise the specific aeration demand (SADm) for ultrafiltration hollow-fibre (UF-HF) submerged membranes in membrane bioreactor (MBR) configurations. Three membranes with distinct manufacturing [...] Read more.
This study proposes a novel methodology to assess fouling that complements the flux-step test (FST) by integrating aeration-step tests (ASTs) to optimise the specific aeration demand (SADm) for ultrafiltration hollow-fibre (UF-HF) submerged membranes in membrane bioreactor (MBR) configurations. Three membranes with distinct manufacturing processes—non-thermal-induced phase separation (NIPS) and thermal-induced phase separation (TIPS)—were evaluated under continuous and intermittent aeration. The AST revealed that the critical SADm has a range of 0.1–0.5 m3·m−2·h−1 for continuous aeration and 0.1–0.2 m3·m−2·h−1 for intermittent aeration. NIPS membranes with homogeneous structures were less prone to fouling under intermittent aeration, while TIPS membranes with a heterogeneous structure exhibited better recovery under continuous aeration, reflecting distinct fouling dynamics. Findings indicate that the FST alone does not fully represent operational conditions, as aeration efficiency is linked to membrane structure and aeration mode. By combining the FST with ASTs, our approach enables tailored fouling control strategies, reducing energy consumption and improving MBR performance. These insights are critical for advancing toward energy-efficient wastewater treatment technologies. Full article
(This article belongs to the Special Issue Membrane Fouling Control: Mechanism, Properties, and Applications)
Show Figures

Figure 1

22 pages, 5224 KiB  
Article
Impacts of Natural Organic Matter and Dissolved Solids on Fluoride Retention of Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes
by Hussein Abuelgasim, Nada Nasri, Martin Futterlieb, Radhia Souissi, Fouad Souissi, Stefan Panglisch and Ibrahim M. A. ElSherbiny
Membranes 2025, 15(4), 110; https://doi.org/10.3390/membranes15040110 - 2 Apr 2025
Viewed by 91
Abstract
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow [...] Read more.
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow velocity, and recovery rate). dNF40 membranes exhibited F retention above 70% ± 1.2 in the absence of NOM and competing ions. However, when filtering synthetic model water (SMW) designed to simulate groundwater contaminated with high total dissolved solids (TDSs) and NOM, F retention decreased to approximately 60% ± 0.7, which was generally attributed to ion competition. Furthermore, despite limited declines in normalized permeability, the addition of NOM to SMW notably deceased F retention in the steady state to~20% due to fouling effects. The facilitated transport of the divalent cations Ca2+ and Mg2+ could be observed, as they accumulated in the organic fouling layer. While SO42− retention remained relatively stable, the retention of monovalent anions (NO3, Cl, and F) decreased substantially due to drag effects. Na+ retention improved slightly to maintain electroneutrality. Feed salinity was shown to significantly affect separation efficiency, with PEC layers undergoing swelling and certain structural changes as the ionic strength increased. During batch filtration experiments at varying recovery rates, the retention of monovalent anions further decreased, with F retention reducing to just ~10% at a 90% recovery rate. This study provides valuable insights into better understanding and optimizing the performance of PEC-based NF membranes across diverse water treatment scenarios. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

11 pages, 2284 KiB  
Article
The Nexus Between Sperm Membrane Integrity, Sperm Motility, and DNA Fragmentation
by Alfredo Góngora, Stephen Johnston, Pablo Contreras, Carmen López-Fernández and Jaime Gosálvez
Membranes 2025, 15(4), 109; https://doi.org/10.3390/membranes15040109 - 2 Apr 2025
Viewed by 102
Abstract
This study investigated the interrelationships between sperm plasma membrane integrity, motility, and DNA fragmentation (SDF) to provide a more holistic understanding of male fertility. A total of 1159 ejaculates were analyzed for sperm membrane integrity (% dead spermatozoa), motility (% immotile spermatozoa), and [...] Read more.
This study investigated the interrelationships between sperm plasma membrane integrity, motility, and DNA fragmentation (SDF) to provide a more holistic understanding of male fertility. A total of 1159 ejaculates were analyzed for sperm membrane integrity (% dead spermatozoa), motility (% immotile spermatozoa), and SDF (% sperm with fragmented DNA). The statistical methods included non-parametric correlation analysis and artificial intelligence (AI)-generated cluster analysis to identify patterns based on these three parameters. The results showed a moderate correlation (ρ = 0.65; p < 0.000) between sperm membrane integrity and motility, indicating that immotile sperm were more likely to exhibit membrane damage. A weak correlation (ρ = 0.21; p < 0.000) suggested that DNA damage was largely independent of the other sperm parameters. Cluster analysis identified three main clusters: Cluster 0: high levels of low membrane integrity, immotile sperm, and moderate DNA fragmentation. Cluster 1: moderate membrane integrity and motility but extremely high DNA fragmentation. Cluster 2: the lowest levels of membrane damage, immotile sperm, and DNA fragmentation, indicating overall better sperm quality. The clustering techniques demonstrated their ability to integrate multiple sperm parameters, enabling a more individualized fertility diagnosis and potentially enhancing male infertility assessments. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

31 pages, 11434 KiB  
Article
Optimization of Carbon Dioxide Utilization: Simulation-Based Analysis of Reverse Water Gas Shift Membrane Reactors
by Putri Permatasari, Manabu Miyamoto, Yasunori Oumi, Yogi Wibisono Budhi, Haroki Madani, Teguh Kurniawan and Shigeyuki Uemiya
Membranes 2025, 15(4), 107; https://doi.org/10.3390/membranes15040107 - 1 Apr 2025
Viewed by 186
Abstract
This study focuses on optimizing the Reverse Water Gas Shift (RWGS) reaction system using a membrane reactor to improve CO2 conversion efficiency. A one-dimensional simulation model was developed using FlexPDE Professional Version 8.01/W64 software to analyze the performance of ZSM-5 membranes integrated [...] Read more.
This study focuses on optimizing the Reverse Water Gas Shift (RWGS) reaction system using a membrane reactor to improve CO2 conversion efficiency. A one-dimensional simulation model was developed using FlexPDE Professional Version 8.01/W64 software to analyze the performance of ZSM-5 membranes integrated with 0.5 wt% Ru-Cu/ZnO/Al2O3 catalysts. The results show that the membrane reactor significantly outperforms the conventional Packed Bed Reactor by achieving higher CO2 conversion (0.61 vs. 0.99 with optimized parameters), especially at lower temperatures, due to its ability to remove H2O and shift the reaction equilibrium selectively. Key operational parameters, including temperature, pressure, and sweep gas flow rate, were optimized to maximize membrane reactor performance. The ZSM-5 membrane showed strong H2O selectivity, with an optimum operating temperature of around 400–600 °C. The problem is that many reactants permeate at higher temperatures. Subsequently, a Half-MPBR design was introduced. This design was able to overcome the reactant permeation problem and increase the conversion. The conversion ratios for PBR, MPBR, and Half-MPBR are 0.71, 0.75, and 0.86, respectively. This work highlights the potential of membrane reactors to overcome the thermodynamic limitations of RWGS reactions and provides valuable insights to advance Carbon Capture and Utilization technologies. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

20 pages, 2750 KiB  
Article
Influence of Nanoparticle Content and Cross-Linking Degree on Functional Attributes of Calcium Alginate-ZnO Nanocomposite Wound Dressings
by Sergio Henrique Toledo e Silva, Andrea Cristiane Krause Bierhalz and Ângela Maria Moraes
Membranes 2025, 15(4), 108; https://doi.org/10.3390/membranes15040108 - 1 Apr 2025
Viewed by 137
Abstract
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle [...] Read more.
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle content and cross-linking degree on membrane attributes. ZnOnano addition did not significantly alter the mechanical properties, water vapor permeability, swelling degree in water and the alginate amorphous nature of the nanocomposite membranes. The increase in cross-linking degree, on the other hand, altered the microstructure of the membranes, increased the tensile strength and reduced the water vapor permeability of the nanocomposite membranes. The presence of ZnOnano in alginate membranes granted them antibacterial activity in vitro against Pseudomonas aeruginosa and Staphylococcus aureus and substantially increased the absorption capacity in phosphate buffer and fetal bovine serum solutions, validating their potential use as wound dressings. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

17 pages, 5190 KiB  
Article
Boundary Flow-Induced Membrane Tubulation Under Turgor Pressures
by Hao Xue and Rui Ma
Membranes 2025, 15(4), 106; https://doi.org/10.3390/membranes15040106 - 1 Apr 2025
Viewed by 128
Abstract
During clathrin-mediated endocytosis in yeast cells, a small patch of flat membrane is deformed into a tubular shape. It is generally believed that the tubulation is powered by actin polymerization. However, studies based on quantitative measurement of the actin molecules suggest that they [...] Read more.
During clathrin-mediated endocytosis in yeast cells, a small patch of flat membrane is deformed into a tubular shape. It is generally believed that the tubulation is powered by actin polymerization. However, studies based on quantitative measurement of the actin molecules suggest that they are not sufficient to produce the forces to overcome the high turgor pressure inside of the cell. In this paper, we model the membrane as a viscous 2D fluid with elasticity and study the dynamic membrane deformation powered by a boundary lipid flow under osmotic pressure. We find that in the absence pressure, the lipid flow drives the membrane into a spherical shape or a parachute shape. The shapes over time exhibit self-similarity. The presence of pressure transforms the membrane into a tubular shape that elongates almost linearly with time and the self-similarity between shapes at different times is lost. Furthermore, the width of the tube is found to scale inversely to the cubic root of the pressure, and the tension across the membrane is negative and scales to the cubic root squared of the pressure. Our results demonstrate that boundary flow powered by myosin motors, as a new way to deform the membrane, could be a supplementary mechanism to actin polymerization to drive endocytosis in yeast cells. Full article
Show Figures

Figure 1

21 pages, 4489 KiB  
Article
Membrane for Pressure-Driven Separation Prepared with a Method of 3D Printing: Performance in Concentrating Orange Peel Extract
by Priscila Pini Pereira, Isabela Pacola Gonçalves, Luiza C. A. Molina, Roberta Delcolle, Yuliya S. Dzyazko, Carolina Moser Paraiso, Guilherme L. Batista Neto, Alexandre Diório, Angélica Marquetotti Salcedo Vieira and Rosângela Bergamasco
Membranes 2025, 15(4), 105; https://doi.org/10.3390/membranes15040105 - 1 Apr 2025
Viewed by 161
Abstract
3D-printing enables the fabrication of membranes with desired shapes and geometrical parameters. In this study, a membrane for pressure-driven processes was manufactured in a single step using the fused deposition modeling (FDM) technique. The membrane was produced from a mixture of polylactic acid [...] Read more.
3D-printing enables the fabrication of membranes with desired shapes and geometrical parameters. In this study, a membrane for pressure-driven processes was manufactured in a single step using the fused deposition modeling (FDM) technique. The membrane was produced from a mixture of polylactic acid (PLA) with sucrose as a pore-forming agent. Sucrose was removed from the final membrane by washing it with water. The membrane consists of three layers, and this sandwich-like structure ensures its mechanical stability. The material obtained was characterized using SEM and AFM imaging, as well as nitrogen adsorption-desorption and contact angle measurements. The porosity of each layer of the membrane is due to a loose region, which is coated on both sides with a dense film formed during printing. The pores responsible for rejection capability can be found in grooves between the polymer stripes in the dense layer. The membrane exhibits a water permeability of 64 L m−2h−1bar−1, with a molecular weight cut-off of 69 kDa. The PLA membrane can be used for polyphenol concentration, demonstrating a permeability of 2–3.4 L m−2h−1bar−1 and a selectivity towards these compounds of 78–98% at 0.5 bar, with a flux decline ratio of up to 50%. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

24 pages, 9051 KiB  
Article
Influence of Silane Treatment on CNM/PAC/PVDF Properties and Performance for Water Desalination by VMD
by Samraa R. Khaleel, Salah S. Ibrahim, Alessandra Criscuoli, Alberto Figoli, Dahiru U. Lawal and Qusay F. Alsalhy
Membranes 2025, 15(4), 104; https://doi.org/10.3390/membranes15040104 - 1 Apr 2025
Viewed by 170
Abstract
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness [...] Read more.
Vacuum membrane distillation (VMD) is a promising process for water desalination. However, it suffers some obstacles, such as fouling and wetting, due to the inadequate hydrophobicity of the membrane and high vacuum pressure on the permeate side. Therefore, improving surface hydrophobicity and roughness is important. In this study, the effect of 1H,1H,2H,2H-Perfluorodecyltriethoxysilane (PFTES) on the morphology and performance of CNM/PAC/PVDF membranes at various concentrations was investigated for the first time. Membrane characteristics such as FTIR, XRD, FE-SEM, EDX, contact angle, and hydrophobicity before and after modification were analyzed and tested using VMD for water desalination. The results showed that the membrane coated with 1 wt.% PFTES had a higher permeate flux and lower rejection than the membranes coated with the 2 wt.% PFTES. The 2 wt.% PFTES enhanced the contact angle to 117° and increased the salt rejection above 99.9%, with the permeate flux set to 23.2 L/m2·h and at a 35 g/L NaCl feed solution, 65 °C feed temperature, a 0.6 L/min feed flow rate, and 21 kPa (abs) vacuum pressure. This means that 2 wt.% PFTES-coated PVDF membranes exhibited slightly lower permeate flux with higher hydrophobicity, salt rejection, and stability over long-term operation. These outstanding results indicate the potential of the novel CNM/PAC/PVDF/PFTES membranes for saline water desalination. Moreover, this study presents useful guidance for the enhancement of membrane structures and physical properties in the field of saline water desalination using porous CNM/PAC/PVDF/PFTES membranes. Full article
Show Figures

Figure 1

17 pages, 1419 KiB  
Review
DNA Transactions in Bacteria and Membranes: A Place for the Hfq Protein?
by Sylwia Bloch, Richard R. Sinden, Frank Wien, Grzegorz Węgrzyn and Véronique Arluison
Membranes 2025, 15(4), 103; https://doi.org/10.3390/membranes15040103 - 1 Apr 2025
Viewed by 175
Abstract
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, [...] Read more.
DNA metabolism consists of crucial processes occurring in all living cells. These processes include various transactions, such as DNA replication, genetic recombination, transposition, mutagenesis, and DNA repair. While it was initially assumed that these processes might occur in the cytoplasm of prokaryotic cells, subsequent reports indicated the importance of the cell membrane in various DNA transactions. Furthermore, newly identified factors play significant roles in regulating DNA-related cellular processes. One such factor is the Hfq protein, originally discovered as an RNA chaperone but later shown to be involved in several molecular mechanisms. These include DNA transactions and interaction with the cell membrane. Recent studies have suggested that Hfq plays a role in the regulation of DNA replication, mutagenesis, and recombination. In this narrative review, we will focus on the importance of membranes in DNA transactions and discuss the potential role of Hfq-mediated regulation of these processes in Escherichia coli, where the protein is the best characterized. Special attention is given to the affinity of this small protein for both DNA and membranes, which might help explain some of the findings from recent experiments. Full article
(This article belongs to the Collection Featured Reviews in Membrane Science)
Show Figures

Figure 1

15 pages, 4706 KiB  
Article
Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries
by Luis Javier Salazar-Gastélum, Alejandro Arredondo-Espínola, Sergio Pérez-Sicairos, Lorena Álvarez-Contreras, Noé Arjona and Minerva Guerra-Balcázar
Membranes 2025, 15(4), 102; https://doi.org/10.3390/membranes15040102 - 1 Apr 2025
Viewed by 339
Abstract
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin [...] Read more.
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin films were prepared using the solvent casting method and characterized using proton nuclear magnetic resonance (¹H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The ion-exchange capacity (IEC), KOH uptake, ionic conductivity, and battery performance were also obtained by varying the degree of functionalization of the A-SPEs (30 and 120%, denoted as PSf30/PSf120, respectively). The IEC analysis revealed that PSf120 exhibited a higher quantity of functional groups, enhancing its hydroxide conductivity, which reached a value of 22.19 mS cm−1. In addition, PSf120 demonstrated a higher power density (70 vs. 50 mW cm−2) and rechargeability than benchmarked Fumapem FAA-3-50 A-SPE. Postmortem analysis further confirmed the lower formation of ZnO for PSf120, indicating the improved stability and reduced passivation of the zinc electrode. Therefore, this type of A-SPE could improve the performance and rechargeability of all-solid-state ZABs. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

17 pages, 6340 KiB  
Article
Membrane Remodeling Driven by Shallow Helix Insertions via a Cooperative Mechanism
by Jie Hu and Yiben Fu
Membranes 2025, 15(4), 101; https://doi.org/10.3390/membranes15040101 - 1 Apr 2025
Viewed by 120
Abstract
Helix-membrane interactions are key to membrane deformation and play significant biological roles. However, systematic studies on the mechanisms behind these interactions are limited. This study uses a continuum membrane model to investigate how shallowly inserted helices interact with biological membranes, focusing on membrane [...] Read more.
Helix-membrane interactions are key to membrane deformation and play significant biological roles. However, systematic studies on the mechanisms behind these interactions are limited. This study uses a continuum membrane model to investigate how shallowly inserted helices interact with biological membranes, focusing on membrane deformation and the cooperative effects of multiple helices. Our findings show that even short helices (2 nm in length) can induce anisotropic membrane deformation. Longer helices and deeper insertions result in more significant deformations, and the spatial arrangement of helices affects the nature of these deformations. The perturbation area (PA) and perturbation extent (PE) are quantified to describe membrane deformation, revealing stronger cooperative effects in parallel insertions and more complex deformations in other arrangements. Additionally, membrane properties, such as lipid composition, influence the extent of deformation. In multi-helix systems, we observe local clustering behavior when perturbations are strong enough, with cooperativity varying based on helix length, insertion depth, and membrane composition. This study provides criteria for helix cooperativity, advancing our understanding of helix–membrane interactions and their biological significance in processes like membrane remodeling. Full article
Show Figures

Figure 1

Back to TopTop